from __future__ import division __copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la import sys import pytools.test import pytest import pyopencl as cl from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from sumpy.expansion.multipole import VolumeTaylorMultipoleExpansion from sumpy.expansion.local import VolumeTaylorLocalExpansion, H2DLocalExpansion from sumpy.kernel import (LaplaceKernel, HelmholtzKernel, AxisTargetDerivative, DirectionalSourceDerivative) import logging logger = logging.getLogger(__name__) try: import faulthandler except ImportError: pass else: faulthandler.enable() @pytest.mark.opencl def test_p2p(ctx_getter): ctx = ctx_getter() queue = cl.CommandQueue(ctx) dimensions = 3 n = 5000 from sumpy.p2p import P2P lknl = LaplaceKernel(dimensions) knl = P2P(ctx, [lknl, AxisTargetDerivative(0, lknl)], exclude_self=False) targets = np.random.rand(dimensions, n) sources = np.random.rand(dimensions, n) strengths = np.ones(n, dtype=np.float64) evt, (potential, x_derivative) = knl( queue, targets, sources, [strengths], out_host=True) potential_ref = np.empty_like(potential) targets = targets.T sources = sources.T for itarg in xrange(n): potential_ref[itarg] = np.sum( strengths / np.sum((targets[itarg] - sources)**2, axis=-1)**0.5) potential_ref *= 1/(4*np.pi) rel_err = la.norm(potential - potential_ref)/la.norm(potential_ref) print rel_err assert rel_err < 1e-3 @pytools.test.mark_test.opencl @pytest.mark.parametrize("order", [2, 3, 4, 5]) @pytest.mark.parametrize(("knl", "expn_class"), [ (LaplaceKernel(2), VolumeTaylorLocalExpansion), (LaplaceKernel(2), VolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), VolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), VolumeTaylorLocalExpansion), (HelmholtzKernel(2), H2DLocalExpansion), ]) @pytest.mark.parametrize("with_source_derivative", [ False, True ]) def test_p2e2p(ctx_getter, knl, expn_class, order, with_source_derivative): #logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) np.random.seed(17) res = 100 nsources = 100 extra_kwargs = {} if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 if with_source_derivative: knl = DirectionalSourceDerivative(knl, "dir_vec") out_kernels = [ knl, AxisTargetDerivative(0, knl), ] expn = expn_class(knl, order=order) from sumpy import P2E, E2P, P2P p2e = P2E(ctx, expn, out_kernels) e2p = E2P(ctx, expn, out_kernels) p2p = P2P(ctx, out_kernels, exclude_self=False) from pytools.convergence import EOCRecorder eoc_rec_pot = EOCRecorder() eoc_rec_grad_x = EOCRecorder() from sumpy.expansion.local import LocalExpansionBase if issubclass(expn_class, LocalExpansionBase): h_values = [1/5, 1/7, 1/20] else: h_values = [1/2, 1/3, 1/5] center = np.array([2, 1], np.float64) sources = (0.7*(-0.5+np.random.rand(knl.dim, nsources).astype(np.float64)) + center[:, np.newaxis]) strengths = np.ones(nsources, dtype=np.float64) * (1/nsources) source_boxes = np.array([0], dtype=np.int32) box_source_starts = np.array([0], dtype=np.int32) box_source_counts_nonchild = np.array([nsources], dtype=np.int32) extra_source_kwargs = extra_kwargs.copy() if with_source_derivative: alpha = np.linspace(0, 2*np.pi, nsources, np.float64) dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)]) extra_source_kwargs["dir_vec"] = dir_vec from sumpy.visualization import FieldPlotter for h in h_values: if issubclass(expn_class, LocalExpansionBase): loc_center = np.array([5.5, 0.0]) + center centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1) fp = FieldPlotter(loc_center, extent=h, npoints=res) else: eval_center = np.array([1/h, 0.0]) + center fp = FieldPlotter(eval_center, extent=0.1, npoints=res) centers = ( np.array([0.0, 0.0], dtype=np.float64).reshape(knl.dim, 1) + center[:, np.newaxis]) targets = fp.points # {{{ apply p2e evt, (mpoles,) = p2e(queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, #flags="print_hl_cl", out_host=True, **extra_source_kwargs) # }}} # {{{ apply e2p ntargets = targets.shape[-1] box_target_starts = np.array([0], dtype=np.int32) box_target_counts_nonchild = np.array([ntargets], dtype=np.int32) evt, (pot, grad_x, ) = e2p( queue, expansions=mpoles, target_boxes=source_boxes, box_target_starts=box_target_starts, box_target_counts_nonchild=box_target_counts_nonchild, centers=centers, targets=targets, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} # {{{ compute (direct) reference solution evt, (pot_direct, grad_x_direct, ) = p2p( queue, targets, sources, (strengths,), out_host=True, **extra_source_kwargs) err_pot = la.norm((pot - pot_direct)/res**2) err_grad_x = la.norm((grad_x - grad_x_direct)/res**2) if 1: err_pot = err_pot / la.norm((pot_direct)/res**2) err_grad_x = err_grad_x / la.norm((grad_x_direct)/res**2) if 0: import matplotlib.pyplot as pt from matplotlib.colors import Normalize pt.subplot(131) im = fp.show_scalar_in_matplotlib(pot.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.subplot(132) im = fp.show_scalar_in_matplotlib(pot_direct.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.colorbar() pt.subplot(133) im = fp.show_scalar_in_matplotlib(np.log10(1e-15+np.abs(pot-pot_direct))) im.set_norm(Normalize(vmin=-6, vmax=1)) pt.colorbar() pt.show() # }}} eoc_rec_pot.add_data_point(h, err_pot) eoc_rec_grad_x.add_data_point(h, err_grad_x) print expn_class, knl, order print("POTENTIAL:") print(eoc_rec_pot) print("X TARGET DERIVATIVE:") print(eoc_rec_grad_x) tgt_order = order + 1 if issubclass(expn_class, LocalExpansionBase): tgt_order_grad = tgt_order - 1 slack = 0.7 grad_slack = 0.5 else: tgt_order_grad = tgt_order + 1 slack = 0.5 grad_slack = 1 if order <= 2: slack += 1 grad_slack += 1 if isinstance(knl, DirectionalSourceDerivative): slack += 1 grad_slack += 2 assert eoc_rec_pot.order_estimate() > tgt_order - slack assert eoc_rec_grad_x.order_estimate() > tgt_order_grad - grad_slack class PConvergenceVerifier(object): def __init__(self): self.orders = [] self.errors = [] def add_data_point(self, order, error): self.orders.append(order) self.errors.append(error) def __str__(self): from pytools import Table tbl = Table() tbl.add_row(("p", "error")) for p, err in zip(self.orders, self.errors): tbl.add_row((str(p), str(err))) return str(tbl) def __call__(self): orders = np.array(self.orders, np.float64) log_errors = np.log10(1e-20+np.abs(np.array(self.errors, np.float64))) constant_ish = log_errors/orders c_max = np.max(constant_ish) c_min = np.min(constant_ish) assert c_max < c_min + 2, constant_ish @pytools.test.mark_test.opencl @pytest.mark.parametrize("knl", [ LaplaceKernel(2), HelmholtzKernel(2) ]) def test_translations(ctx_getter, knl): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) np.random.seed(17) res = 200 nsources = 15 out_kernels = [knl] extra_kwargs = {} if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 # Just to make sure things also work away from the origin origin = np.array([2, 1], np.float64) sources = (0.7*(-0.5+np.random.rand(knl.dim, nsources).astype(np.float64)) + origin[:, np.newaxis]) strengths = np.ones(nsources, dtype=np.float64) * (1/nsources) pconv_verifier = PConvergenceVerifier() from sumpy.visualization import FieldPlotter eval_offset = np.array([5.5, 0.0]) centers = (np.array( [ # box 0: particles, first mpole here [0, 0], # box 1: mpole here np.array([-0.2, 0.1], np.float64), # box 2: first local here eval_offset + np.array([0.3, -0.2], np.float64), # box 3: second local and eval here eval_offset ], dtype=np.float64) + origin).T.copy() del eval_offset for order in [2, 3]: m_expn = VolumeTaylorMultipoleExpansion(knl, order=order) l_expn = VolumeTaylorLocalExpansion(knl, order=order) from sumpy import P2E, E2P, P2P, E2E p2m = P2E(ctx, m_expn, out_kernels) m2m = E2E(ctx, m_expn, m_expn) m2l = E2E(ctx, m_expn, l_expn) l2l = E2E(ctx, l_expn, l_expn) l2p = E2P(ctx, l_expn, out_kernels) p2p = P2P(ctx, out_kernels, exclude_self=False) fp = FieldPlotter(centers[:, -1], extent=0.3, npoints=res) targets = fp.points # {{{ apply P2M p2m_source_boxes = np.array([0], dtype=np.int32) p2m_box_source_starts = np.array([0], dtype=np.int32) p2m_box_source_counts_nonchild = np.array([nsources], dtype=np.int32) evt, (mpoles,) = p2m(queue, source_boxes=p2m_source_boxes, box_source_starts=p2m_box_source_starts, box_source_counts_nonchild=p2m_box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, #flags="print_hl_wrapper", out_host=True, **extra_kwargs) # }}} # {{{ apply M2M m2m_target_boxes = np.array([1], dtype=np.int32) m2m_src_box_starts = np.array([0, 1], dtype=np.int32) m2m_src_box_lists = np.array([0], dtype=np.int32) evt, (mpoles,) = m2m(queue, src_expansions=mpoles, target_boxes=m2m_target_boxes, src_box_starts=m2m_src_box_starts, src_box_lists=m2m_src_box_lists, centers=centers, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} # {{{ apply M2L m2l_target_boxes = np.array([2], dtype=np.int32) m2l_src_box_starts = np.array([0, 1], dtype=np.int32) m2l_src_box_lists = np.array([1], dtype=np.int32) evt, (mpoles,) = m2l(queue, src_expansions=mpoles, target_boxes=m2l_target_boxes, src_box_starts=m2l_src_box_starts, src_box_lists=m2l_src_box_lists, centers=centers, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} # {{{ apply L2L l2l_target_boxes = np.array([3], dtype=np.int32) l2l_src_box_starts = np.array([0, 1], dtype=np.int32) l2l_src_box_lists = np.array([2], dtype=np.int32) evt, (mpoles,) = l2l(queue, src_expansions=mpoles, target_boxes=l2l_target_boxes, src_box_starts=l2l_src_box_starts, src_box_lists=l2l_src_box_lists, centers=centers, #flags="print_hl_wrapper", out_host=True, **extra_kwargs) # }}} # {{{ apply L2P ntargets = targets.shape[-1] l2p_target_boxes = np.array([3], dtype=np.int32) l2p_box_target_starts = np.array([0], dtype=np.int32) l2p_box_target_counts_nonchild = np.array([ntargets], dtype=np.int32) evt, (pot,) = l2p( queue, expansions=mpoles, target_boxes=l2p_target_boxes, box_target_starts=l2p_box_target_starts, box_target_counts_nonchild=l2p_box_target_counts_nonchild, centers=centers, targets=targets, #flags="trace_assignment_values", out_host=True, **extra_kwargs ) # }}} # {{{ compute (direct) reference solution evt, (pot_direct,) = p2p( queue, targets, sources, (strengths,), out_host=True, **extra_kwargs) err = la.norm((pot - pot_direct)/res**2) err = err / (la.norm(pot_direct) / res**2) # }}} pconv_verifier.add_data_point(order, err) print pconv_verifier pconv_verifier() # You can test individual routines by typing # $ python test_kernels.py 'test_p2p(cl.create_some_context)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__]) # vim: fdm=marker