from __future__ import print_function, division __copyright__ = """ Copyright (C) 2017 Matt Wala Copyright (C) 2006-2016 SymPy Development Team """ # {{{ license and original license __license__ = """ Modifications from original are under the following license: Copyright (C) 2017 Matt Wala Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =========================================================================== Based on sympy/simplify/tests/test_cse.py from SymPy 1.0, license as follows: Copyright (c) 2006-2016 SymPy Development Team All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of SymPy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # }}} import pytest import sys from sumpy.symbolic import ( Add, Pow, exp, sqrt, symbols, sympify, cos, sin, Function, USE_SYMENGINE) if not USE_SYMENGINE: from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.functions.special.hyper import meijerg from sympy.simplify import cse_opts from sumpy.cse import ( cse, preprocess_for_cse, postprocess_for_cse) w, x, y, z = symbols('w,x,y,z') x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13') sympyonly = ( pytest.mark.skipif(USE_SYMENGINE, reason="uses a sympy-only feature")) # Dummy "optimization" functions for testing. def opt1(expr): return expr + y def opt2(expr): return expr*z def test_preprocess_for_cse(): assert preprocess_for_cse(x, [(opt1, None)]) == x + y assert preprocess_for_cse(x, [(None, opt1)]) == x assert preprocess_for_cse(x, [(None, None)]) == x assert preprocess_for_cse(x, [(opt1, opt2)]) == x + y assert preprocess_for_cse( x, [(opt1, None), (opt2, None)]) == (x + y)*z def test_postprocess_for_cse(): assert postprocess_for_cse(x, [(opt1, None)]) == x assert postprocess_for_cse(x, [(None, opt1)]) == x + y assert postprocess_for_cse(x, [(None, None)]) == x assert postprocess_for_cse(x, [(opt1, opt2)]) == x*z # Note the reverse order of application. assert postprocess_for_cse( x, [(None, opt1), (None, opt2)]) == x*z + y def test_cse_single(): # Simple substitution. e = Add(Pow(x + y, 2), sqrt(x + y)) substs, reduced = cse([e]) assert substs == [(x0, x + y)] assert reduced == [sqrt(x0) + x0**2] @sympyonly def test_cse_not_possible(): # No substitution possible. e = Add(x, y) substs, reduced = cse([e]) assert substs == [] assert reduced == [x + y] # issue 6329 eq = (meijerg((1, 2), (y, 4), (5,), [], x) + meijerg((1, 3), (y, 4), (5,), [], x)) assert cse(eq) == ([], [eq]) def test_nested_substitution(): # Substitution within a substitution. e = Add(Pow(w*x + y, 2), sqrt(w*x + y)) substs, reduced = cse([e]) assert substs == [(x0, w*x + y)] assert reduced == [sqrt(x0) + x0**2] @sympyonly def test_subtraction_opt(): # Make sure subtraction is optimized. e = (x - y)*(z - y) + exp((x - y)*(z - y)) substs, reduced = cse( [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) assert substs == [(x0, (x - y)*(y - z))] assert reduced == [-x0 + exp(-x0)] e = -(x - y)*(z - y) + exp(-(x - y)*(z - y)) substs, reduced = cse( [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) assert substs == [(x0, (x - y)*(y - z))] assert reduced == [x0 + exp(x0)] # issue 4077 n = -1 + 1/x e = n/x/(-n)**2 - 1/n/x assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \ ([], [0]) def test_multiple_expressions(): e1 = (x + y)*z e2 = (x + y)*w substs, reduced = cse([e1, e2]) assert substs == [(x0, x + y)] assert reduced == [x0*z, x0*w] l_ = [w*x*y + z, w*y] substs, reduced = cse(l_) rsubsts, _ = cse(reversed(l_)) assert substs == rsubsts assert reduced == [z + x*x0, x0] l_ = [w*x*y, w*x*y + z, w*y] substs, reduced = cse(l_) rsubsts, _ = cse(reversed(l_)) assert substs == rsubsts assert reduced == [x1, x1 + z, x0] f = Function("f") l_ = [f(x - z, y - z), x - z, y - z] substs, reduced = cse(l_) rsubsts, _ = cse(reversed(l_)) assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)] assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)] assert reduced == [f(x1, x2), x1, x2] l_ = [w*y + w + x + y + z, w*x*y] assert cse(l_) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0]) assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0]) assert cse([x + y, x + z]) == ([], [x + y, x + z]) assert cse([x*y, z + x*y, x*y*z + 3]) == \ ([(x0, x*y)], [x0, z + x0, 3 + x0*z]) def test_issue_4203(): assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0]) def test_dont_cse_subs(): f = Function("f") g = Function("g") name_val, (expr,) = cse(f(x+y).diff(x) + g(x+y).diff(x)) assert name_val == [] def test_dont_cse_derivative(): from sumpy.symbolic import Derivative f = Function("f") deriv = Derivative(f(x+y), x) name_val, (expr,) = cse(x + y + deriv) assert name_val == [] assert expr == x + y + deriv def test_pow_invpow(): assert cse(1/x**2 + x**2) == \ ([(x0, x**2)], [x0 + 1/x0]) assert cse(x**2 + (1 + 1/x**2)/x**2) == \ ([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)]) assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \ ([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1]) assert cse(cos(1/x**2) + sin(1/x**2)) == \ ([(x0, x**(-2))], [sin(x0) + cos(x0)]) assert cse(cos(x**2) + sin(x**2)) == \ ([(x0, x**2)], [sin(x0) + cos(x0)]) assert cse(y/(2 + x**2) + z/x**2/y) == \ ([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)]) assert cse(exp(x**2) + x**2*cos(1/x**2)) == \ ([(x0, x**2)], [x0*cos(1/x0) + exp(x0)]) assert cse((1 + 1/x**2)/x**2) == \ ([(x0, x**(-2))], [x0*(x0 + 1)]) assert cse(x**(2*y) + x**(-2*y)) == \ ([(x0, x**(2*y))], [x0 + 1/x0]) @sympyonly def test_issue_4499(): # previously, this gave 16 constants from sympy.abc import a, b from sympy import Tuple, S B = Function('B') # noqa G = Function('G') # noqa t = Tuple(* (a, a + S(1)/2, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a - b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b, sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1, sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1), (sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S(1)/2, z/2, -b + 1, -2*a + b, -2*a)) # noqa c = cse(t) assert len(c[0]) == 11 @sympyonly def test_issue_6169(): from sympy import CRootOf r = CRootOf(x**6 - 4*x**5 - 2, 1) assert cse(r) == ([], [r]) # and a check that the right thing is done with the new # mechanism assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y @sympyonly def test_cse_Indexed(): # noqa from sympy import IndexedBase, Idx len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) Dy = IndexedBase('Dy', shape=(len_y-1,)) # noqa i = Idx('i', len_y-1) expr1 = (y[i+1]-y[i])/(x[i+1]-x[i]) expr2 = 1/(x[i+1]-x[i]) replacements, reduced_exprs = cse([expr1, expr2]) assert len(replacements) > 0 @sympyonly def test_Piecewise(): # noqa from sympy import Piecewise, Eq f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True)) ans = cse(f) actual_ans = ([(x0, -z), (x1, x*y)], [Piecewise((x0+x1, Eq(y, 0)), (x0 - x1, True))]) assert ans == actual_ans def test_name_conflict(): z1 = x0 + y z2 = x2 + x3 l_ = [cos(z1) + z1, cos(z2) + z2, x0 + x2] substs, reduced = cse(l_) assert [e.subs(dict(substs)) for e in reduced] == l_ def test_name_conflict_cust_symbols(): z1 = x0 + y z2 = x2 + x3 l_ = [cos(z1) + z1, cos(z2) + z2, x0 + x2] substs, reduced = cse(l_, symbols("x:10")) assert [e.subs(dict(substs)) for e in reduced] == l_ def test_symbols_exhausted_error(): l_ = cos(x+y)+x+y+cos(w+y)+sin(w+y) sym = [x, y, z] with pytest.raises(ValueError): print(cse(l_, symbols=sym)) @sympyonly def test_issue_7840(): # daveknippers' example C393 = sympify( # noqa 'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \ C391 > 2.35), (C392, True)), True))' ) C391 = sympify( # noqa 'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))' ) C393 = C393.subs('C391',C391) # noqa # simple substitution sub = {} sub['C390'] = 0.703451854 sub['C392'] = 1.01417794 ss_answer = C393.subs(sub) # cse substitutions, new_eqn = cse(C393) for pair in substitutions: sub[pair[0].name] = pair[1].subs(sub) cse_answer = new_eqn[0].subs(sub) # both methods should be the same assert ss_answer == cse_answer # GitRay's example expr = sympify( "Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \ (Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \ Symbol('threshold'))), (Symbol('ON'), S.true)), Equality(Symbol('mode'), \ Symbol('AUTO'))), (Symbol('OFF'), S.true)), S.true))" ) substitutions, new_eqn = cse(expr) # this Piecewise should be exactly the same assert new_eqn[0] == expr # there should not be any replacements assert len(substitutions) < 1 def test_recursive_matching(): assert cse([x+y, 2+x+y, x+y+z, 3+x+y+z]) == \ ([(x0, x + y), (x1, x0 + z)], [x0, x0 + 2, x1, x1 + 3]) assert cse(reversed([x+y, 2+x+y, x+y+z, 3+x+y+z])) == \ ([(x0, x + y), (x1, x0 + z)], [x1 + 3, x1, x0 + 2, x0]) # sympy 1.0 gives ([(x0, x*y*z)], [5*x0, w*(x*y), 3*x0]) assert cse([x*y*z*5, x*y*w, x*y*z*3]) == \ ([(x0, x*y), (x1, x0*z)], [5*x1, w*x0, 3*x1]) # sympy 1.0 gives ([(x4, x*y*z)], [5*x4, w*x3*x4, 3*x*x0*x1*x2*y]) assert cse([x*y*z*5, x*y*z*w*x3, x*y*3*x0*x1*x2]) == \ ([(x4, x*y), (x5, x4*z)], [5*x5, w*x3*x5, 3*x0*x1*x2*x4]) assert cse([2*x*x, x*x*y, x*x*y*w, x*x*y*w*x0, x*x*y*w*x2]) == \ ([(x1, x**2), (x3, x1*y), (x4, w*x3)], [2*x1, x3, x4, x0*x4, x2*x4]) if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker