__copyright__ = "Copyright (C) 2018 Alexandru Fikl" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import numpy as np import numpy.linalg as la import pyopencl as cl import pyopencl.array # noqa from sumpy.tools import vector_to_device from sumpy.tools import MatrixBlockIndexRanges import pytest from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) import logging logger = logging.getLogger(__name__) try: import faulthandler except ImportError: pass else: faulthandler.enable() def _build_geometry(queue, n, mode, target_radius=1.0): # parametrize circle t = np.linspace(0.0, 2.0 * np.pi, n, endpoint=False) unit_circle = np.exp(1j * t) unit_circle = np.array([unit_circle.real, unit_circle.imag]) # create density sigma = np.cos(mode * t) # create sources and targets h = 2.0 * np.pi / n targets = target_radius * unit_circle sources = unit_circle radius = 7.0 * h centers = unit_circle * (1.0 - radius) expansion_radii = radius * np.ones(n) return (cl.array.to_device(queue, targets), cl.array.to_device(queue, sources), vector_to_device(queue, centers), cl.array.to_device(queue, expansion_radii), cl.array.to_device(queue, sigma)) def _build_block_index(queue, nnodes, nblks, factor): indices = np.arange(0, nnodes) ranges = np.arange(0, nnodes + 1, nnodes // nblks) if abs(factor - 1.0) < 1.0e-14: ranges_ = ranges indices_ = indices else: indices_ = np.empty(ranges.shape[0] - 1, dtype=np.object) for i in range(ranges.shape[0] - 1): iidx = indices[np.s_[ranges[i]:ranges[i + 1]]] indices_[i] = np.sort(np.random.choice(iidx, size=int(factor * len(iidx)), replace=False)) ranges_ = np.cumsum([0] + [r.shape[0] for r in indices_]) indices_ = np.hstack(indices_) from sumpy.tools import BlockIndexRanges return BlockIndexRanges(queue.context, cl.array.to_device(queue, indices_).with_queue(None), cl.array.to_device(queue, ranges_).with_queue(None)) @pytest.mark.parametrize("factor", [1.0, 0.6]) @pytest.mark.parametrize("lpot_id", [1, 2]) def test_qbx_direct(ctx_factory, factor, lpot_id): logging.basicConfig(level=logging.INFO) ctx = ctx_factory() queue = cl.CommandQueue(ctx) ndim = 2 nblks = 10 order = 12 mode_nr = 25 from sumpy.kernel import LaplaceKernel, DirectionalSourceDerivative if lpot_id == 1: knl = LaplaceKernel(ndim) elif lpot_id == 2: knl = LaplaceKernel(ndim) knl = DirectionalSourceDerivative(knl, dir_vec_name="dsource_vec") else: raise ValueError("unknow lpot_id") from sumpy.expansion.local import LineTaylorLocalExpansion lknl = LineTaylorLocalExpansion(knl, order) from sumpy.qbx import LayerPotential lpot = LayerPotential(ctx, [lknl]) from sumpy.qbx import LayerPotentialMatrixGenerator mat_gen = LayerPotentialMatrixGenerator(ctx, [lknl]) from sumpy.qbx import LayerPotentialMatrixBlockGenerator blk_gen = LayerPotentialMatrixBlockGenerator(ctx, [lknl]) for n in [200, 300, 400]: targets, sources, centers, expansion_radii, sigma = \ _build_geometry(queue, n, mode_nr, target_radius=1.2) h = 2 * np.pi / n strengths = (sigma * h,) tgtindices = _build_block_index(queue, n, nblks, factor) srcindices = _build_block_index(queue, n, nblks, factor) index_set = MatrixBlockIndexRanges(ctx, tgtindices, srcindices) extra_kwargs = {} if lpot_id == 2: from pytools.obj_array import make_obj_array extra_kwargs["dsource_vec"] = \ vector_to_device(queue, make_obj_array(np.ones((ndim, n)))) _, (result_lpot,) = lpot(queue, targets=targets, sources=sources, centers=centers, expansion_radii=expansion_radii, strengths=strengths, **extra_kwargs) result_lpot = result_lpot.get() _, (mat,) = mat_gen(queue, targets=targets, sources=sources, centers=centers, expansion_radii=expansion_radii, **extra_kwargs) mat = mat.get() result_mat = mat.dot(strengths[0].get()) _, (blk,) = blk_gen(queue, targets=targets, sources=sources, centers=centers, expansion_radii=expansion_radii, index_set=index_set, **extra_kwargs) blk = blk.get() rowindices = index_set.linear_row_indices.get(queue) colindices = index_set.linear_col_indices.get(queue) eps = 1.0e-10 * la.norm(result_lpot) assert la.norm(result_mat - result_lpot) < eps assert la.norm(blk - mat[rowindices, colindices]) < eps @pytest.mark.parametrize("exclude_self", [True, False]) @pytest.mark.parametrize("factor", [1.0, 0.6]) @pytest.mark.parametrize("lpot_id", [1, 2]) def test_p2p_direct(ctx_factory, exclude_self, factor, lpot_id): logging.basicConfig(level=logging.INFO) ctx = ctx_factory() queue = cl.CommandQueue(ctx) ndim = 2 nblks = 10 mode_nr = 25 from sumpy.kernel import LaplaceKernel, DirectionalSourceDerivative if lpot_id == 1: lknl = LaplaceKernel(ndim) elif lpot_id == 2: lknl = LaplaceKernel(ndim) lknl = DirectionalSourceDerivative(lknl, dir_vec_name="dsource_vec") else: raise ValueError("unknow lpot_id") from sumpy.p2p import P2P lpot = P2P(ctx, [lknl], exclude_self=exclude_self) from sumpy.p2p import P2PMatrixGenerator mat_gen = P2PMatrixGenerator(ctx, [lknl], exclude_self=exclude_self) from sumpy.p2p import P2PMatrixBlockGenerator blk_gen = P2PMatrixBlockGenerator(ctx, [lknl], exclude_self=exclude_self) for n in [200, 300, 400]: targets, sources, _, _, sigma = \ _build_geometry(queue, n, mode_nr, target_radius=1.2) h = 2 * np.pi / n strengths = (sigma * h,) tgtindices = _build_block_index(queue, n, nblks, factor) srcindices = _build_block_index(queue, n, nblks, factor) index_set = MatrixBlockIndexRanges(ctx, tgtindices, srcindices) extra_kwargs = {} if exclude_self: extra_kwargs["target_to_source"] = \ cl.array.arange(queue, 0, n, dtype=np.int) if lpot_id == 2: from pytools.obj_array import make_obj_array extra_kwargs["dsource_vec"] = \ vector_to_device(queue, make_obj_array(np.ones((ndim, n)))) _, (result_lpot,) = lpot(queue, targets=targets, sources=sources, strength=strengths, **extra_kwargs) result_lpot = result_lpot.get() _, (mat,) = mat_gen(queue, targets=targets, sources=sources, **extra_kwargs) mat = mat.get() result_mat = mat.dot(strengths[0].get()) _, (blk,) = blk_gen(queue, targets=targets, sources=sources, index_set=index_set, **extra_kwargs) blk = blk.get() eps = 1.0e-10 * la.norm(result_lpot) assert la.norm(result_mat - result_lpot) < eps index_set = index_set.get(queue) for i in range(index_set.nblocks): assert la.norm(index_set.block_take(blk, i) - index_set.take(mat, i)) < eps # You can test individual routines by typing # $ python test_kernels.py "test_p2p(cl.create_some_context)" if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker