__copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest import sys import numpy as np import numpy.linalg as la from pytools.obj_array import make_obj_array from pytools.convergence import PConvergenceVerifier from arraycontext import pytest_generate_tests_for_array_contexts from sumpy.array_context import ( # noqa: F401 PytestPyOpenCLArrayContextFactory, _acf) import sumpy.symbolic as sym from sumpy.expansion.multipole import ( VolumeTaylorMultipoleExpansion, H2DMultipoleExpansion, VolumeTaylorMultipoleExpansionBase, LinearPDEConformingVolumeTaylorMultipoleExpansion) from sumpy.expansion.local import ( VolumeTaylorLocalExpansion, H2DLocalExpansion, LinearPDEConformingVolumeTaylorLocalExpansion) from sumpy.expansion.m2l import NonFFTM2LTranslationClassFactory from sumpy.kernel import ( LaplaceKernel, HelmholtzKernel, BiharmonicKernel, StokesletKernel, AxisTargetDerivative, DirectionalSourceDerivative) import logging logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # {{{ test_p2p @pytest.mark.parametrize("exclude_self", (True, False)) def test_p2p(actx_factory, exclude_self): actx = actx_factory() dimensions = 3 n = 5000 from sumpy.p2p import P2P lknl = LaplaceKernel(dimensions) knl = P2P(actx.context, [lknl, AxisTargetDerivative(0, lknl)], exclude_self=exclude_self) rng = np.random.default_rng(42) targets = rng.random(size=(dimensions, n)) sources = targets if exclude_self else rng.random(size=(dimensions, n)) strengths = np.ones(n, dtype=np.float64) extra_kwargs = {} if exclude_self: extra_kwargs["target_to_source"] = ( actx.from_numpy(np.arange(n, dtype=np.int32))) evt, (potential, x_derivative) = knl( actx.queue, actx.from_numpy(targets), actx.from_numpy(sources), [actx.from_numpy(strengths)], **extra_kwargs) potential = actx.to_numpy(potential) potential_ref = np.empty_like(potential) targets = targets.T sources = sources.T for itarg in range(n): with np.errstate(divide="ignore"): invdists = np.sum((targets[itarg] - sources) ** 2, axis=-1) ** -0.5 if exclude_self: assert np.isinf(invdists[itarg]) invdists[itarg] = 0 potential_ref[itarg] = np.sum(strengths * invdists) potential_ref *= 1/(4*np.pi) rel_err = la.norm(potential - potential_ref)/la.norm(potential_ref) logger.info("error: %.12e", rel_err) assert rel_err < 1e-3 # }}} # {{{ test_p2e_multiple @pytest.mark.parametrize(("base_knl", "expn_class"), [ (LaplaceKernel(2), LinearPDEConformingVolumeTaylorLocalExpansion), (LaplaceKernel(2), LinearPDEConformingVolumeTaylorMultipoleExpansion), ]) def test_p2e_multiple(actx_factory, base_knl, expn_class): order = 4 actx = actx_factory() nsources = 100 extra_kwargs = {} if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: extra_kwargs["k"] = 0.2 * (0.707 + 0.707j) else: extra_kwargs["k"] = 0.2 if isinstance(base_knl, StokesletKernel): extra_kwargs["mu"] = 0.2 source_kernels = [ DirectionalSourceDerivative(base_knl, "dir_vec"), base_knl, ] knl = base_knl expn = expn_class(knl, order=order) from sumpy import P2EFromSingleBox rng = np.random.default_rng(14) center = np.array([2, 1, 0][:knl.dim], np.float64) sources = actx.from_numpy( 0.7 * (-0.5 + rng.random(size=(knl.dim, nsources), dtype=np.float64)) + center[:, np.newaxis]) strengths = [ actx.from_numpy(np.ones(nsources, dtype=np.float64) * (1/nsources)), actx.from_numpy(np.ones(nsources, dtype=np.float64) * (2/nsources)) ] source_boxes = actx.from_numpy(np.array([0], dtype=np.int32)) box_source_starts = actx.from_numpy(np.array([0], dtype=np.int32)) box_source_counts_nonchild = ( actx.from_numpy(np.array([nsources], dtype=np.int32))) alpha = np.linspace(0, 2*np.pi, nsources, np.float64) dir_vec = actx.from_numpy(np.vstack([np.cos(alpha), np.sin(alpha)])) from sumpy.expansion.local import LocalExpansionBase if issubclass(expn_class, LocalExpansionBase): loc_center = np.array([5.5, 0.0, 0.0][:knl.dim]) + center centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1) else: centers = (np.array([0.0, 0.0, 0.0][:knl.dim], dtype=np.float64).reshape(knl.dim, 1) + center[:, np.newaxis]) centers = actx.from_numpy(centers) rscale = 0.5 # pick something non-1 # apply p2e at the same time p2e = P2EFromSingleBox(actx.context, expn, kernels=source_kernels, strength_usage=[0, 1]) evt, (mpoles,) = p2e(actx.queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, nboxes=1, tgt_base_ibox=0, rscale=rscale, dir_vec=dir_vec, **extra_kwargs) actual_result = actx.to_numpy(mpoles) # apply p2e separately expected_result = np.zeros_like(actual_result) for i, source_kernel in enumerate(source_kernels): extra_source_kwargs = extra_kwargs.copy() if isinstance(source_kernel, DirectionalSourceDerivative): extra_source_kwargs["dir_vec"] = dir_vec p2e = P2EFromSingleBox(actx.context, expn, kernels=[source_kernel], strength_usage=[i]) evt, (mpoles,) = p2e(actx.queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, nboxes=1, tgt_base_ibox=0, rscale=rscale, **extra_source_kwargs) mpoles = actx.to_numpy(mpoles) expected_result += mpoles norm = la.norm(actual_result - expected_result)/la.norm(expected_result) assert norm < 1e-12 # }}} # {{{ test_p2e2p @pytest.mark.parametrize("order", [4]) @pytest.mark.parametrize(("base_knl", "expn_class"), [ (LaplaceKernel(2), VolumeTaylorLocalExpansion), (LaplaceKernel(2), VolumeTaylorMultipoleExpansion), (LaplaceKernel(2), LinearPDEConformingVolumeTaylorLocalExpansion), (LaplaceKernel(2), LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), VolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), VolumeTaylorLocalExpansion), (HelmholtzKernel(2), LinearPDEConformingVolumeTaylorLocalExpansion), (HelmholtzKernel(2), LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), H2DLocalExpansion), (HelmholtzKernel(2), H2DMultipoleExpansion), (DirectionalSourceDerivative(BiharmonicKernel(2), "dir_vec"), VolumeTaylorMultipoleExpansion), (DirectionalSourceDerivative(BiharmonicKernel(2), "dir_vec"), VolumeTaylorLocalExpansion), (HelmholtzKernel(2, allow_evanescent=True), VolumeTaylorMultipoleExpansion), (HelmholtzKernel(2, allow_evanescent=True), VolumeTaylorLocalExpansion), (HelmholtzKernel(2, allow_evanescent=True), LinearPDEConformingVolumeTaylorLocalExpansion), (HelmholtzKernel(2, allow_evanescent=True), LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(2, allow_evanescent=True), H2DLocalExpansion), (HelmholtzKernel(2, allow_evanescent=True), H2DMultipoleExpansion), ]) @pytest.mark.parametrize("with_source_derivative", [ False, True ]) def test_p2e2p(actx_factory, base_knl, expn_class, order, with_source_derivative): actx = actx_factory() res = 100 nsources = 100 extra_kwargs = {} if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: extra_kwargs["k"] = 0.2 * (0.707 + 0.707j) else: extra_kwargs["k"] = 0.2 if isinstance(base_knl, StokesletKernel): extra_kwargs["mu"] = 0.2 if with_source_derivative: knl = DirectionalSourceDerivative(base_knl, "dir_vec") else: knl = base_knl target_kernels = [ knl, AxisTargetDerivative(0, knl), ] expn = expn_class(knl, order=order) from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P p2e = P2EFromSingleBox(actx.context, expn, kernels=[knl]) e2p = E2PFromSingleBox(actx.context, expn, kernels=target_kernels) p2p = P2P(actx.context, target_kernels, exclude_self=False) from pytools.convergence import EOCRecorder eoc_rec_pot = EOCRecorder() eoc_rec_grad_x = EOCRecorder() from sumpy.expansion.local import LocalExpansionBase if issubclass(expn_class, LocalExpansionBase): h_values = [1/5, 1/7, 1/20] else: h_values = [1/2, 1/3, 1/5] rng = np.random.default_rng(19) center = np.array([2, 1, 0][:knl.dim], np.float64) sources = actx.from_numpy( 0.7 * (-0.5 + rng.random((knl.dim, nsources), dtype=np.float64)) + center[:, np.newaxis]) strengths = actx.from_numpy(np.ones(nsources, dtype=np.float64) / nsources) source_boxes = actx.from_numpy(np.array([0], dtype=np.int32)) box_source_starts = actx.from_numpy(np.array([0], dtype=np.int32)) box_source_counts_nonchild = ( actx.from_numpy(np.array([nsources], dtype=np.int32))) extra_source_kwargs = extra_kwargs.copy() if isinstance(knl, DirectionalSourceDerivative): alpha = np.linspace(0, 2*np.pi, nsources, np.float64) dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)]) extra_source_kwargs["dir_vec"] = actx.from_numpy(dir_vec) from sumpy.visualization import FieldPlotter for h in h_values: if issubclass(expn_class, LocalExpansionBase): loc_center = np.array([5.5, 0.0, 0.0][:knl.dim]) + center centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1) fp = FieldPlotter(loc_center, extent=h, npoints=res) else: eval_center = np.array([1/h, 0.0, 0.0][:knl.dim]) + center fp = FieldPlotter(eval_center, extent=0.1, npoints=res) centers = (np.array([0.0, 0.0, 0.0][:knl.dim], dtype=np.float64).reshape(knl.dim, 1) + center[:, np.newaxis]) centers = actx.from_numpy(centers) targets = actx.from_numpy(make_obj_array(fp.points)) rscale = 0.5 # pick something non-1 # {{{ apply p2e evt, (mpoles,) = p2e(actx.queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=(strengths,), nboxes=1, tgt_base_ibox=0, rscale=rscale, **extra_source_kwargs) # }}} # {{{ apply e2p ntargets = fp.points.shape[-1] box_target_starts = actx.from_numpy(np.array([0], dtype=np.int32)) box_target_counts_nonchild = ( actx.from_numpy(np.array([ntargets], dtype=np.int32))) evt, (pot, grad_x, ) = e2p( actx.queue, src_expansions=mpoles, src_base_ibox=0, target_boxes=source_boxes, box_target_starts=box_target_starts, box_target_counts_nonchild=box_target_counts_nonchild, centers=centers, targets=targets, rscale=rscale, **extra_kwargs) pot = actx.to_numpy(pot) grad_x = actx.to_numpy(grad_x) # }}} # {{{ compute (direct) reference solution evt, (pot_direct, grad_x_direct, ) = p2p( actx.queue, targets, sources, (strengths,), **extra_source_kwargs) pot_direct = actx.to_numpy(pot_direct) grad_x_direct = actx.to_numpy(grad_x_direct) err_pot = la.norm((pot - pot_direct)/res**2) err_grad_x = la.norm((grad_x - grad_x_direct)/res**2) if 1: err_pot = err_pot / la.norm((pot_direct)/res**2) err_grad_x = err_grad_x / la.norm((grad_x_direct)/res**2) if 0: import matplotlib.pyplot as pt from matplotlib.colors import Normalize pt.subplot(131) im = fp.show_scalar_in_matplotlib(pot.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.subplot(132) im = fp.show_scalar_in_matplotlib(pot_direct.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.colorbar() pt.subplot(133) im = fp.show_scalar_in_matplotlib(np.log10(1e-15+np.abs(pot-pot_direct))) im.set_norm(Normalize(vmin=-6, vmax=1)) pt.colorbar() pt.show() # }}} eoc_rec_pot.add_data_point(h, err_pot) eoc_rec_grad_x.add_data_point(h, err_grad_x) logger.info("expn_cls %s knl %s order %d", expn_class, knl, order) logger.info("POTENTIAL:") logger.info("%s", eoc_rec_pot) logger.info("X TARGET DERIVATIVE:") logger.info("%s", eoc_rec_grad_x) tgt_order = order + 1 if issubclass(expn_class, LocalExpansionBase): tgt_order_grad = tgt_order - 1 slack = 0.7 grad_slack = 0.5 else: tgt_order_grad = tgt_order + 1 slack = 0.5 grad_slack = 1 if order <= 2: slack += 1 grad_slack += 1 if isinstance(knl, DirectionalSourceDerivative): slack += 1 grad_slack += 2 if isinstance(base_knl, DirectionalSourceDerivative): slack += 1 grad_slack += 2 if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: slack += 0.5 grad_slack += 0.5 if issubclass(expn_class, VolumeTaylorMultipoleExpansionBase): slack += 0.3 grad_slack += 0.3 assert eoc_rec_pot.order_estimate() > tgt_order - slack assert eoc_rec_grad_x.order_estimate() > tgt_order_grad - grad_slack # }}} # {{{ test_translations @pytest.mark.parametrize("knl, local_expn_class, mpole_expn_class", [ (LaplaceKernel(2), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), (LaplaceKernel(2), LinearPDEConformingVolumeTaylorLocalExpansion, LinearPDEConformingVolumeTaylorMultipoleExpansion), (LaplaceKernel(3), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), (LaplaceKernel(3), LinearPDEConformingVolumeTaylorLocalExpansion, LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), LinearPDEConformingVolumeTaylorLocalExpansion, LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(3), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), (HelmholtzKernel(3), LinearPDEConformingVolumeTaylorLocalExpansion, LinearPDEConformingVolumeTaylorMultipoleExpansion), (HelmholtzKernel(2), H2DLocalExpansion, H2DMultipoleExpansion), (StokesletKernel(2, 0, 0), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), (StokesletKernel(2, 0, 0), LinearPDEConformingVolumeTaylorLocalExpansion, LinearPDEConformingVolumeTaylorMultipoleExpansion), ]) def test_translations(actx_factory, knl, local_expn_class, mpole_expn_class, visualize=False): if visualize: logging.basicConfig(level=logging.INFO) actx = actx_factory() res = 20 nsources = 15 target_kernels = [knl] extra_kwargs = {} if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 if isinstance(knl, StokesletKernel): extra_kwargs["mu"] = 0.05 # Just to make sure things also work away from the origin rng = np.random.default_rng(18) origin = np.array([2, 1, 0][:knl.dim], np.float64) sources = actx.from_numpy( 0.7 * (-0.5 + rng.random((knl.dim, nsources), dtype=np.float64)) + origin[:, np.newaxis]) strengths = actx.from_numpy( np.ones(nsources, dtype=np.float64) * (1/nsources)) pconv_verifier_p2m2p = PConvergenceVerifier() pconv_verifier_p2m2m2p = PConvergenceVerifier() pconv_verifier_p2m2m2l2p = PConvergenceVerifier() pconv_verifier_full = PConvergenceVerifier() from sumpy.visualization import FieldPlotter eval_offset = np.array([5.5, 0.0, 0][:knl.dim]) fp = FieldPlotter(eval_offset + origin, extent=0.3, npoints=res) centers = actx.from_numpy((np.array( [ # box 0: particles, first mpole here [0, 0, 0][:knl.dim], # box 1: second mpole here np.array([-0.2, 0.1, 0][:knl.dim], np.float64), # box 2: first local here eval_offset + np.array([0.3, -0.2, 0][:knl.dim], np.float64), # box 3: second local and eval here eval_offset ], dtype=np.float64) + origin).T.copy()) del eval_offset if knl.dim == 2: orders = [2, 3, 4] else: orders = [3, 4, 5] nboxes = centers.shape[-1] def eval_at(e2p, source_box_nr, rscale): e2p_target_boxes = actx.from_numpy( np.array([source_box_nr], dtype=np.int32)) # These are indexed by global box numbers. e2p_box_target_starts = actx.from_numpy( np.array([0, 0, 0, 0], dtype=np.int32)) e2p_box_target_counts_nonchild = actx.from_numpy( np.array([0, 0, 0, 0], dtype=np.int32)) e2p_box_target_counts_nonchild[source_box_nr] = fp.points.shape[-1] evt, (pot,) = e2p( actx.queue, src_expansions=mpoles, src_base_ibox=0, target_boxes=e2p_target_boxes, box_target_starts=e2p_box_target_starts, box_target_counts_nonchild=e2p_box_target_counts_nonchild, centers=centers, targets=targets, rscale=rscale, **extra_kwargs ) pot = actx.to_numpy(pot) return pot m2l_factory = NonFFTM2LTranslationClassFactory() m2l_translation = m2l_factory.get_m2l_translation_class(knl, local_expn_class)() for order in orders: m_expn = mpole_expn_class(knl, order=order) l_expn = local_expn_class(knl, order=order, m2l_translation=m2l_translation) from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P, E2EFromCSR p2m = P2EFromSingleBox(actx.context, m_expn) m2m = E2EFromCSR(actx.context, m_expn, m_expn) m2p = E2PFromSingleBox(actx.context, m_expn, target_kernels) m2l = E2EFromCSR(actx.context, m_expn, l_expn) l2l = E2EFromCSR(actx.context, l_expn, l_expn) l2p = E2PFromSingleBox(actx.context, l_expn, target_kernels) p2p = P2P(actx.context, target_kernels, exclude_self=False) targets = actx.from_numpy(make_obj_array(fp.points)) # {{{ compute (direct) reference solution evt, (pot_direct,) = p2p( actx.queue, targets, sources, (strengths,), **extra_kwargs) pot_direct = actx.to_numpy(pot_direct) # }}} m1_rscale = 0.5 m2_rscale = 0.25 l1_rscale = 0.5 l2_rscale = 0.25 # {{{ apply P2M p2m_source_boxes = actx.from_numpy(np.array([0], dtype=np.int32)) # These are indexed by global box numbers. p2m_box_source_starts = actx.from_numpy( np.array([0, 0, 0, 0], dtype=np.int32)) p2m_box_source_counts_nonchild = actx.from_numpy( np.array([nsources, 0, 0, 0], dtype=np.int32)) evt, (mpoles,) = p2m(actx.queue, source_boxes=p2m_source_boxes, box_source_starts=p2m_box_source_starts, box_source_counts_nonchild=p2m_box_source_counts_nonchild, centers=centers, sources=sources, strengths=(strengths,), nboxes=nboxes, rscale=m1_rscale, tgt_base_ibox=0, **extra_kwargs) # }}} pot = eval_at(m2p, 0, m1_rscale) err = la.norm((pot - pot_direct) / res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2p.add_data_point(order, err) # {{{ apply M2M m2m_target_boxes = actx.from_numpy(np.array([1], dtype=np.int32)) m2m_src_box_starts = actx.from_numpy(np.array([0, 1], dtype=np.int32)) m2m_src_box_lists = actx.from_numpy(np.array([0], dtype=np.int32)) evt, (mpoles,) = m2m(actx.queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=m2m_target_boxes, src_box_starts=m2m_src_box_starts, src_box_lists=m2m_src_box_lists, centers=centers, src_rscale=m1_rscale, tgt_rscale=m2_rscale, **extra_kwargs) # }}} pot = eval_at(m2p, 1, m2_rscale) err = la.norm((pot - pot_direct)/res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2m2p.add_data_point(order, err) # {{{ apply M2L m2l_target_boxes = actx.from_numpy(np.array([2], dtype=np.int32)) m2l_src_box_starts = actx.from_numpy(np.array([0, 1], dtype=np.int32)) m2l_src_box_lists = actx.from_numpy(np.array([1], dtype=np.int32)) evt, (mpoles,) = m2l(actx.queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=m2l_target_boxes, src_box_starts=m2l_src_box_starts, src_box_lists=m2l_src_box_lists, centers=centers, src_rscale=m2_rscale, tgt_rscale=l1_rscale, **extra_kwargs) # }}} pot = eval_at(l2p, 2, l1_rscale) err = la.norm((pot - pot_direct)/res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2m2l2p.add_data_point(order, err) # {{{ apply L2L l2l_target_boxes = actx.from_numpy(np.array([3], dtype=np.int32)) l2l_src_box_starts = actx.from_numpy(np.array([0, 1], dtype=np.int32)) l2l_src_box_lists = actx.from_numpy(np.array([2], dtype=np.int32)) evt, (mpoles,) = l2l(actx.queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=l2l_target_boxes, src_box_starts=l2l_src_box_starts, src_box_lists=l2l_src_box_lists, centers=centers, src_rscale=l1_rscale, tgt_rscale=l2_rscale, **extra_kwargs) # }}} pot = eval_at(l2p, 3, l2_rscale) err = la.norm((pot - pot_direct)/res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_full.add_data_point(order, err) for name, verifier in [ ("p2m2p", pconv_verifier_p2m2p), ("p2m2m2p", pconv_verifier_p2m2m2p), ("p2m2m2l2p", pconv_verifier_p2m2m2l2p), ("full", pconv_verifier_full), ]: logger.info(30*"-") logger.info("name: %s", name) logger.info(30*"-") logger.info("result: %s", verifier) logger.info(30*"-") verifier() # }}} # {{{ test_m2m_and_l2l_exprs_simpler @pytest.mark.parametrize("order", [4]) @pytest.mark.parametrize(("base_knl", "local_expn_class", "mpole_expn_class"), [ (LaplaceKernel(2), VolumeTaylorLocalExpansion, VolumeTaylorMultipoleExpansion), ]) @pytest.mark.parametrize("with_source_derivative", [ False, True ]) def test_m2m_and_l2l_exprs_simpler(base_knl, local_expn_class, mpole_expn_class, order, with_source_derivative): extra_kwargs = {} if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: extra_kwargs["k"] = 0.2 * (0.707 + 0.707j) else: extra_kwargs["k"] = 0.2 if isinstance(base_knl, StokesletKernel): extra_kwargs["mu"] = 0.2 if with_source_derivative: knl = DirectionalSourceDerivative(base_knl, "dir_vec") else: knl = base_knl mpole_expn = mpole_expn_class(knl, order=order) local_expn = local_expn_class(knl, order=order) dvec = sym.make_sym_vector("d", knl.dim) src_coeff_exprs = [sym.Symbol(f"src_coeff{i}") for i in range(len(mpole_expn))] src_rscale = 3 tgt_rscale = 2 faster_m2m = mpole_expn.translate_from(mpole_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale) slower_m2m = mpole_expn.translate_from(mpole_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale, _fast_version=False) for expr1, expr2 in zip(faster_m2m, slower_m2m): assert float(sym.doit(expr1 - expr2).expand()) == 0.0 faster_l2l = local_expn.translate_from(local_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale) slower_l2l = local_expn.translate_from(local_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale, _fast_version=False) for expr1, expr2 in zip(faster_l2l, slower_l2l): assert float(sym.doit(expr1 - expr2).expand()) == 0.0 # }}} # {{{ test toeplitz def _m2l_translate_simple(tgt_expansion, src_expansion, src_coeff_exprs, src_rscale, dvec, tgt_rscale): if not tgt_expansion.use_rscale: src_rscale = 1 tgt_rscale = 1 from sumpy.expansion.multipole import VolumeTaylorMultipoleExpansionBase if not isinstance(src_expansion, VolumeTaylorMultipoleExpansionBase): return 1 # We know the general form of the multipole expansion is: # # coeff0 * diff(kernel, mi0) + coeff1 * diff(kernel, mi1) + ... # # To get the local expansion coefficients, we take derivatives of # the multipole expansion. taker = src_expansion.kernel.get_derivative_taker(dvec, src_rscale, sac=None) from sumpy.tools import add_mi result = [] for deriv in tgt_expansion.get_coefficient_identifiers(): local_result = [] for coeff, term in zip( src_coeff_exprs, src_expansion.get_coefficient_identifiers()): kernel_deriv = taker.diff(add_mi(deriv, term)) / src_rscale**sum(deriv) local_result.append( coeff * kernel_deriv * tgt_rscale**sum(deriv)) result.append(sym.Add(*local_result)) return result def test_m2l_toeplitz(): dim = 3 knl = LaplaceKernel(dim) local_expn_class = LinearPDEConformingVolumeTaylorLocalExpansion mpole_expn_class = LinearPDEConformingVolumeTaylorMultipoleExpansion m2l_factory = NonFFTM2LTranslationClassFactory() m2l_translation = m2l_factory.get_m2l_translation_class(knl, local_expn_class)() local_expn = local_expn_class(knl, order=5, m2l_translation=m2l_translation) mpole_expn = mpole_expn_class(knl, order=5) dvec = sym.make_sym_vector("d", dim) rng = np.random.default_rng(44) src_coeff_exprs = list(1 + rng.standard_normal(len(mpole_expn))) src_rscale = 2.0 tgt_rscale = 1.0 expected_output = _m2l_translate_simple( local_expn, mpole_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale) actual_output = local_expn.translate_from( mpole_expn, src_coeff_exprs, src_rscale, dvec, tgt_rscale, sac=None) replace_dict = {d: rng.random() for d in dvec} for sym_a, sym_b in zip(expected_output, actual_output): num_a = sym_a.xreplace(replace_dict) num_b = sym_b.xreplace(replace_dict) assert abs(num_a - num_b)/abs(num_a) < 1e-10 # }}} # {{{ test_m2m_compressed @pytest.mark.parametrize("dim", [2, 3]) @pytest.mark.parametrize("order", [2, 4, 6]) def test_m2m_compressed_error_helmholtz(actx_factory, dim, order): from sumpy import toys actx = actx_factory() knl = HelmholtzKernel(dim) extra_kernel_kwargs = {"k": 5} mpole_expn_classes = [LinearPDEConformingVolumeTaylorMultipoleExpansion, VolumeTaylorMultipoleExpansion] local_expn_classes = [LinearPDEConformingVolumeTaylorLocalExpansion, VolumeTaylorLocalExpansion] eval_center = np.array([0.1, 0.0, 0.0][:dim]).reshape(dim, 1) mpole_center = np.array([0.0, 0.0, 0.0][:dim]).reshape(dim, 1) ntargets_per_dim = 10 nsources_per_dim = 10 sources_grid = np.meshgrid(*[np.linspace(0, 1, nsources_per_dim) for _ in range(dim)]) sources_grid = np.ndarray.flatten(np.array(sources_grid)).reshape(dim, -1) targets_grid = np.meshgrid(*[np.linspace(0, 1, ntargets_per_dim) for _ in range(dim)]) targets_grid = np.ndarray.flatten(np.array(targets_grid)).reshape(dim, -1) targets = eval_center - 0.1*(targets_grid - 0.5) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() h_values = 2.0**np.arange(-7, -3) for h in h_values: sources = (h*(-0.5+sources_grid.astype(np.float64)) + mpole_center) second_center = mpole_center + h/2 furthest_source = np.max(np.abs(sources - mpole_center)) m2m_vals = [0, 0] for i, (mpole_expn_class, local_expn_class) in \ enumerate(zip(mpole_expn_classes, local_expn_classes)): tctx = toys.ToyContext( actx.context, knl, extra_kernel_kwargs=extra_kernel_kwargs, local_expn_class=local_expn_class, mpole_expn_class=mpole_expn_class, ) pt_src = toys.PointSources( tctx, sources, np.ones(sources.shape[-1]) ) mexp = toys.multipole_expand(pt_src, center=mpole_center.reshape(dim), order=order, rscale=h) mexp2 = toys.multipole_expand(mexp, center=second_center.reshape(dim), order=order, rscale=h) m2m_vals[i] = mexp2.eval(targets) err = np.linalg.norm(m2m_vals[1] - m2m_vals[0]) \ / np.linalg.norm(m2m_vals[1]) eoc_rec.add_data_point(furthest_source, err) logger.info("\n%s", eoc_rec) assert eoc_rec.order_estimate() >= order + 1 # }}} # You can test individual routines by typing # $ python test_kernels.py 'test_p2p(_acf, True)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: pytest.main([__file__]) # vim: fdm=marker