from __future__ import division # timing function ------------------------------------------------------------- def time(): """Return elapsed CPU time, as a float, in seconds.""" import os time_opt = os.environ.get("PYTOOLS_LOG_TIME") if time_opt == "wall": from time import time return time() else: from resource import getrusage, RUSAGE_SELF return getrusage(RUSAGE_SELF).ru_utime # abstract logging interface -------------------------------------------------- class LogQuantity: """A source of loggable scalars.""" def __init__(self, name, unit=None, description=None): self.name = name self.unit = unit self.description = description @property def default_aggregator(self): return None def __call__(self): """Return the current value of the diagnostic represented by this L{LogQuantity}.""" raise NotImplementedError class SimulationLogQuantity(LogQuantity): """A source of loggable scalars that needs to know the simulation timestep.""" def __init__(self, dt, name, unit=None, description=None): LogQuantity.__init__(self, name, unit, description) self.dt = dt def set_dt(self, dt): self.dt = dt class CallableLogQuantityAdapter(LogQuantity): """Adapt a 0-ary callable as a L{LogQuantity}.""" def __init__(self, callable, name, unit=None, description=None): self.callable = callable LogQuantity.__init__(self, name, unit, description) def __call__(self): return self.callable() # manager functionality ------------------------------------------------------- class _QuantityData: def __init__(self, quantity, interval=1, table=None, default_aggregator=None): self.quantity = quantity self.interval = interval self.default_aggregator = default_aggregator or quantity.default_aggregator if table is None: from pytools.datatable import DataTable self.table = DataTable(["step", "rank", "value"]) else: self.table = table.copy() def _join_by_first_of_tuple(list_of_iterables): loi = [i.__iter__() for i in list_of_iterables] if not loi: return key_vals = [iter.next() for iter in loi] keys = [kv[0] for kv in key_vals] values = [kv[1] for kv in key_vals] target_key = max(keys) force_advance = False i = 0 while True: while keys[i] < target_key or force_advance: try: new_key, new_value = loi[i].next() except StopIteration: return assert keys[i] < new_key keys[i] = new_key values[i] = new_value if new_key > target_key: target_key = new_key force_advance = False i += 1 if i >= len(loi): i = 0 if min(keys) == target_key: yield target_key, values[:] force_advance = True class LogManager: """A parallel-capable diagnostic time-series logging facility. A C{LogManager} logs any number of named time series of floats to a file. Non-time-series data, in the form of constants, is also supported and saved. If MPI parallelism is used, the "head rank" below always refers to rank 0. A command line tool called C{logtool} is available for looking at the data in a saved log. """ def __init__(self, filename=None, mpi_comm=None): """Initialize this log manager instance. @arg filename: If given, the log is periodically written to this file. @arg mpi_comm: A C{boost.mpi} communicator. If given, logs are periodically synchronized to the head node, which then writes them out to disk. """ self.quantity_data = {} self.tick_count = 0 self.filename = filename self.constants = {} if filename is not None: from os import access, R_OK if access(self.filename, R_OK): raise IOError, "cowardly refusing to overwrite '%s'" % self.filename # self-timing self.start_time = time() self.t_log = 0 # parallel support self.head_rank = 0 self.mpi_comm = mpi_comm self.is_parallel = mpi_comm is not None if mpi_comm is None: self.rank = 0 self.last_checkpoint = self.start_time else: self.rank = mpi_comm.rank self.next_sync_tick = 10 self.head_rank = 0 # watch stuff self.watches = [] self.next_watch_tick = 1 def add_watches(self, watches): """Add quantities that are printed after every time step.""" from pytools import Record for watch in watches: parsed = self._parse_expr(watch) parsed, dep_data = self._get_expr_dep_data(parsed) from pymbolic import compile compiled = compile(parsed, [dd.varname for dd in dep_data]) watch_info = Record(expr=watch, parsed=parsed, dep_data=dep_data, compiled=compiled) self.watches.append(watch_info) def set_constant(self, name, value): """Make a named, constant value available in the log.""" self.constants[name] = value def tick(self): """Record data points from each added L{LogQuantity}. May also checkpoint data to disk, and/or synchronize data points to the head rank. """ start_time = time() for qbuf in self.quantity_data.itervalues(): if self.tick_count % qbuf.interval == 0: qbuf.table.insert_row((self.tick_count, self.rank, qbuf.quantity())) self.tick_count += 1 end_time = time() self.t_log = end_time - start_time # print watches if self.tick_count == self.next_watch_tick: self._watch_tick() # synchronize logs with parallel peers, if necessary if self.mpi_comm is not None: # parallel-case : sync, then checkpoint if self.tick_count == self.next_sync_tick: if self.filename is not None: # implicitly synchronizes self.save() else: self.synchronize_logs() # figure out next sync tick, broadcast to peers ticks_per_20_sec = 20*self.tick_count/max(1, end_time-self.start_time) next_sync_tick = self.tick_count + int(max(10, ticks_per_20_sec)) from boost.mpi import broadcast self.next_sync_tick = broadcast(self.mpi_comm, next_sync_tick, self.head_rank) else: # non-parallel-case : checkpoint log to disk, if necessary if self.filename is not None: if end_time - self.last_checkpoint > 10: self.save() self.last_checkpoint = end_time def synchronize_logs(self): """Transfer data from client ranks to the head rank. Must be called on all ranks simultaneously.""" if self.mpi_comm is None: return from boost.mpi import gather if self.mpi_comm.rank == self.head_rank: for rank_data in gather(self.mpi_comm, None, self.head_rank)[1:]: for name, rows in rank_data: self.quantity_data[name].table.insert_rows(rows) else: # send non-head data away gather(self.mpi_comm, [(name, qdat.table.data) for name, qdat in self.quantity_data.iteritems()], self.head_rank) # and erase it for qdat in self.quantity_data.itervalues(): qdat.table.clear() def add_quantity(self, quantity, interval=1): """Add an object derived from L{LogQuantity} to this manager.""" self.quantity_data[quantity.name] = _QuantityData(quantity, interval) def get_expr_dataset(self, expression, description=None, unit=None): """Prepare a time-series dataset for a given expression. @arg expression: A C{pymbolic} expression that may involve the time-series variables and the constants in this L{LogManager}. If there is data from multiple ranks for a quantity occuring in this expression, an aggregator may have to be specified. @return: C{(description, unit, table)}, where C{table} is a list of tuples C{(tick_nbr, value)}. Aggregators are specified as follows: - C{qty.min}, C{qty.max}, C{qty.avg}, C{qty.sum}, C{qty.norm2} - C{qty[rank_nbr] """ parsed = self._parse_expr(expression) parsed, dep_data = self._get_expr_dep_data(parsed) # aggregate table data for dd in dep_data: table = self.quantity_data[dd.name].table table.sort(["step"]) dd.table = table.aggregated(["step"], "value", dd.agg_func).data # evaluate unit and description, if necessary if unit is None: from pymbolic import substitute, parse unit = substitute(parsed, dict((dd.expr, parse(dd.quantity.unit)) for dd in dep_data) ) if description is None: description = expression # compile and evaluate from pymbolic import compile compiled = compile(parsed, [dd.varname for dd in dep_data]) return (description, unit, [(key, compiled(*values)) for key, values in _join_by_first_of_tuple( dd.table for dd in dep_data) ]) def get_joint_dataset(self, expressions): """Return a joint data set for a list of expressions. @arg expressions: a list of either strings representing expressions directly, or triples (descr, unit, expr). In the former case, the description and the unit are found automatically, if possible. In the latter case, they are used as specified. @return: A triple C{(descriptions, units, table)}, where C{table} is a a list of C{[(tstep, (val_expr1, val_expr2,...)...]}. """ # dubs is a list of (desc, unit, table) triples as # returned by get_expr_dataset dubs = [] for expr in expressions: if isinstance(expr, str): dub = self.get_expr_dataset(expr) else: expr_descr, expr_unit, expr_str = expr dub = get_expr_dataset( expr_str, description=expr_descr, unit=expr_unit) dubs.append(dub) zipped_dubs = list(zip(*dubs)) zipped_dubs[2] = list( _join_by_first_of_tuple(zipped_dubs[2])) return zipped_dubs def save(self, filename=None): """Save log data to a file. L{synchronize_logs} is called before saving. @arg filename: Specify the file name. If not given, the globally set name is used. """ self.synchronize_logs() if self.mpi_comm and self.mpi_comm.rank != self.head_rank: return if filename is not None: from os import access, R_OK if access(filename, R_OK): raise IOError, "cowardly refusing to overwrite '%s'" % filename else: filename = self.filename save_buffers = dict( (name, _QuantityData( LogQuantity( qdat.quantity.name, qdat.quantity.unit, qdat.quantity.description, ), qdat.interval, qdat.table, qdat.default_aggregator, )) for name, qdat in self.quantity_data.iteritems()) from cPickle import dump, HIGHEST_PROTOCOL dump((save_buffers, self.constants, self.is_parallel), open(filename, "w"), protocol=HIGHEST_PROTOCOL) def load(self, filename): """Load saved log data from C{filename}.""" if self.mpi_comm and self.mpi_comm.rank != self.head_rank: return from cPickle import load self.quantity_data, self.constants, self.is_parallel = load(open(filename)) def get_plot_data(self, expr_x, expr_y): """Generate plot-ready data. @return: C{(data_x, descr_x, unit_x), (data_y, descr_y, unit_y)} """ (descr_x, descr_y), (unit_x, unit_y), data = \ self.get_joint_dataset([expr_x, expr_y]) _, stepless_data = zip(*data) data_x, data_y = zip(*stepless_data) return (data_x, descr_x, unit_x), \ (data_y, descr_y, unit_y) def plot_gnuplot(self, gp, expr_x, expr_y, **kwargs): """Plot data to Gnuplot.py. @arg gp: a Gnuplot.Gnuplot instance to which the plot is sent. @arg expr_x: an allowed argument to L{get_joint_dataset}. @arg expr_y: an allowed argument to L{get_joint_dataset}. @arg kwargs: keyword arguments that are directly passed on to C{Gnuplot.Data}. """ (data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \ self.get_plot_data(expr_x, expr_y) gp.xlabel("%s [%s]" % (descr_x, unit_x)) gp.ylabel("%s [%s]" % (descr_y, unit_y)) gp.plot(Data(data_x, data_y, **kwargs)) def write_datafile(self, filename, expr_x, expr_y): (data_x, label_x), (data_y, label_y) = self.get_plot_data( expr_x, expr_y) outf = open(filename, "w") outf.write("# %s [%s] vs. %s [%s]" % (descr_x, unit_x, descr_y, unit_y)) for dx, dy in zip(data_x, data_y): outf.write("%s\t%s\n" % (repr(dx), repr(dy))) outf.close() def plot_matplotlib(self, expr_x, expr_y): from pylab import xlabel, ylabel, plot (data_x, descr_x, unit_x), (data_y, descr_y, unit_y) = \ self.get_plot_data(expr_x, expr_y) xlabel("%s [%s]" % (descr_x, unit_x)) ylabel("%s [%s]" % (descr_y, unit_y)) xlabel(label_x) ylabel(label_y) plot(data_x, data_y) # private functionality --------------------------------------------------- def _parse_expr(self, expr): from pymbolic import parse, substitute parsed = parse(expr) # substitute in global constants parsed = substitute(parsed, self.constants) return parsed def _get_expr_dep_data(self, parsed): from pymbolic import get_dependencies deps = get_dependencies(parsed) # gather information on aggregation expressions dep_data = [] from pymbolic.primitives import Variable, Lookup, Subscript for dep_idx, dep in enumerate(deps): if isinstance(dep, Variable): name = dep.name agg_func = self.quantity_data[name].default_aggregator if agg_func is None: if self.is_parallel: raise ValueError, "must specify explicit aggregator for '%s'" % name else: agg_func = lambda lst: lst[0] elif isinstance(dep, Lookup): assert isinstance(dep.aggregate, Variable) name = dep.aggregate.name agg_name = dep.name if agg_name == "min": agg_func = min elif agg_name == "max": agg_func = max elif agg_name == "avg": from pytools import average agg_func = average elif agg_name == "sum": agg_func = sum elif agg_name == "norm2": from math import sqrt agg_func = lambda iterable: sqrt( sum(entry**2 for entry in iterable)) else: raise ValueError, "invalid rank aggregator '%s'" % agg_name elif isinstance(dep, Subscript): assert isinstance(dep.aggregate, Variable) name = dep.aggregate.name class Nth: def __init__(self, n): self.n = n def __call__(self, lst): return lst[self.n] from pymbolic import evaluate agg_func = Nth(evaluate(dep.index)) quantity = self.quantity_data[name].quantity from pytools import Record this_dep_data = Record(name=name, quantity=quantity, agg_func=agg_func, varname="logvar%d" % dep_idx, expr=dep) dep_data.append(this_dep_data) # substitute in the "logvar" variable names from pymbolic import var, substitute parsed = substitute(parsed, dict((dd.expr, var(dd.varname)) for dd in dep_data)) return parsed, dep_data def _watch_tick(self): def get_last_value(table): if table: return table.data[-1][2] else: return 0 data_block = dict((name, get_last_value(qdat.table)) for name, qdat in self.quantity_data.iteritems()) if self.mpi_comm is not None: from boost.mpi import broadcast, gather gathered_data = gather(self.mpi_comm, data_block, self.head_rank) else: gathered_data = [data_block] if self.rank == self.head_rank: values = {} for data_block in gathered_data: for name, value in data_block.iteritems(): values.setdefault(name, []).append(value) print " | ".join( "%s=%g" % (watch.expr, watch.compiled( *[dd.agg_func(values[dd.name]) for dd in watch.dep_data])) for watch in self.watches ) ticks_per_sec = self.tick_count/max(1, time()-self.start_time) self.next_watch_tick = self.tick_count + int(max(1, ticks_per_sec)) if self.mpi_comm is not None: self.next_watch_tick = broadcast(self.mpi_comm, self.next_watch_tick, self.head_rank) # actual data loggers --------------------------------------------------------- class IntervalTimer(LogQuantity): """Records the elapsed time between L{start} and L{stop} calls.""" def __init__(self, name="interval", description=None): LogQuantity.__init__(self, name, "s", description) self.elapsed = 0 def start(self): self.start_time = time() def stop(self): self.elapsed += time() - self.start_time del self.start_time def __call__(self): result = self.elapsed self.elapsed = 0 return result class LogUpdateDuration(LogQuantity): """Records how long the last L{LogManager.tick} invocation took.""" def __init__(self, mgr, name="t_log"): LogQuantity.__init__(self, name, "s", "Time spent updating the log") self.log_manager = mgr def __call__(self): return self.log_manager.t_log class EventCounter(LogQuantity): """Counts events signaled by L{add}.""" def __init__(self, name="interval", description=None): LogQuantity.__init__(self, name, "1", description) self.events = 0 def add(self, n=1): self.events += n def transfer(self, counter): self.events += counter.pop() def __call__(self): result = self.events self.events = 0 return result class TimestepCounter(LogQuantity): """Counts the number of times L{LogManager.tick} is called.""" def __init__(self, name="step"): LogQuantity.__init__(self, name, "1", "Timesteps") self.steps = 0 def __call__(self): result = self.steps self.steps += 1 return result class TimestepDuration(LogQuantity): """Records the CPU time between invocations of L{LogManager.tick}.""" def __init__(self, name="t_step"): LogQuantity.__init__(self, name, "s", "Time step duration") self.last_start = time() def __call__(self): now = time() result = now - self.last_start self.last_start = now return result class CPUTime(LogQuantity): """Records (monotonically increasing) CPU time.""" def __init__(self, name="t_cpu"): LogQuantity.__init__(self, name, "s", "Wall time") self.start = time() def __call__(self): return time()-self.start def add_general_quantities(mgr): """Add generally applicable L{LogQuantity} objects to C{mgr}.""" mgr.add_quantity(TimestepDuration()) mgr.add_quantity(CPUTime()) mgr.add_quantity(LogUpdateDuration(mgr)) mgr.add_quantity(TimestepCounter()) class SimulationTime(SimulationLogQuantity): """Record (monotonically increasing) simulation time.""" def __init__(self, dt, name="t_sim", start=0): SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Time") self.t = 0 def __call__(self): result = self.t self.t += self.dt return result class Timestep(SimulationLogQuantity): """Record the magnitude of the simulated time step.""" def __init__(self, dt, name="dt"): SimulationLogQuantity.__init__(self, dt, name, "s", "Simulation Timestep") def __call__(self): return self.dt def set_dt(mgr, dt): """Set the simulation timestep on L{LogManager} C{mgr} to C{dt}.""" for qdat in mgr.quantity_data.itervalues(): if isinstance(qdat.quantity, SimulationLogQuantity): qdat.quantity.set_dt(dt) def add_simulation_quantities(mgr, dt): """Add L{LogQuantity} objects relating to simulation time.""" mgr.add_quantity(SimulationTime(dt)) mgr.add_quantity(Timestep(dt)) add_general_quantities(mgr) def add_run_info(mgr): """Add generic run metadata, such as command line, host, and time.""" import sys mgr.set_constant("cmdline", " ".join(sys.argv)) from socket import gethostname mgr.set_constant("machine", gethostname()) from time import localtime, strftime mgr.set_constant("date", strftime("%a, %d %b %Y %H:%M:%S %Z", localtime()))