Newer
Older
pytential: 2D/3D Layer Potential Evaluation
===========================================
.. image:: https://gitlab.tiker.net/inducer/pytential/badges/master/pipeline.svg
:alt: Gitlab Build Status
:target: https://gitlab.tiker.net/inducer/pytential/commits/master
.. image:: https://dev.azure.com/ak-spam/inducer/_apis/build/status/inducer.pytential?branchName=master
:alt: Azure Build Status
:target: https://dev.azure.com/ak-spam/inducer/_build/latest?definitionId=16&branchName=master
.. image:: https://badge.fury.io/py/pytential.png
:alt: Python Package Index Release Page
:target: https://pypi.org/project/pytential/
pytential helps you accurately evaluate layer
potentials (and, sooner or later, volume potentials).
It also knows how to set up meshes and solve integral
equations.
See `here <https://documen.tician.de/pytential/misc.html#installing-pytential>`_
for easy, self-contained installation instructions for Linux and macOS.
It relies on
* `numpy <http://pypi.python.org/pypi/numpy>`_ for arrays
* `boxtree <http://pypi.python.org/pypi/boxtree>`_ for FMM tree building
* `sumpy <http://pypi.python.org/pypi/sumpy>`_ for expansions and analytical routines
* `modepy <http://pypi.python.org/pypi/modepy>`_ for modes and nodes on simplices
Matt Wala
committed
* `meshmode <http://pypi.python.org/pypi/meshmode>`_ for high order discretizations
* `loopy <http://pypi.python.org/pypi/loo.py>`_ for fast array operations
* `pytest <http://pypi.python.org/pypi/pytest>`_ for automated testing
* `PyOpenCL <http://pypi.python.org/pypi/pyopencl>`_ as computational infrastructure
.. image:: https://badge.fury.io/py/pytential.png
:target: http://pypi.python.org/pypi/pytential
* `installation instructions <https://documen.tician.de/pytential/misc.html#installing-pytential>`_
* `documentation <http://documen.tician.de/pytential>`_
* `wiki home page <http://wiki.tiker.net/Pytential>`_
* `source code via git <http://github.com/inducer/pytential>`_