diff --git a/doc/codegen.rst b/doc/codegen.rst new file mode 100644 index 0000000000000000000000000000000000000000..917751c84b8cdc5c96c039bbd57985f570915e60 --- /dev/null +++ b/doc/codegen.rst @@ -0,0 +1,4 @@ +Generating Code +=============== + +.. automodule:: pytato.codegen diff --git a/doc/index.rst b/doc/index.rst index 18dd4da2c519885b2fb0c93120df7f7db82d923b..187dda3a57237a8239734674b06f72e8c0198b6f 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -6,6 +6,7 @@ Welcome to Pytato's documentation! :caption: Contents: reference + codegen design misc diff --git a/pytato/__init__.py b/pytato/__init__.py index 4cef6a4a58a5fbacf76340cefe8574fdb45446de..dcfaf28c87db410713c6d97ba67fa8565baeaf62 100644 --- a/pytato/__init__.py +++ b/pytato/__init__.py @@ -29,5 +29,13 @@ from pytato.array import ( DottedName, Placeholder, make_placeholder, ) -__all__ = ("DottedName", "Namespace", "Array", "DictOfNamedArrays", - "Tag", "UniqueTag", "Placeholder", "make_placeholder") +from pytato.codegen import generate_loopy +from pytato.program import Target, PyOpenCLTarget + +__all__ = ( + "DottedName", "Namespace", "Array", "DictOfNamedArrays", + "Tag", "UniqueTag", "Placeholder", "make_placeholder", + + "generate_loopy", + "Target", "PyOpenCLTarget", +) diff --git a/pytato/codegen.py b/pytato/codegen.py index e265fbeff8b82724f99c5e77c2a1451a1067e5cc..b3bf553369d7ffa18ed76f06adc6a92da8621b7f 100644 --- a/pytato/codegen.py +++ b/pytato/codegen.py @@ -1,34 +1,82 @@ from __future__ import annotations -# Codegen output class. - +__copyright__ = """Copyright (C) 2020 Matt Wala""" + +__license__ = """ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +""" import collections import dataclasses -from typing import cast, Any, ContextManager, Callable, Union, Optional, Mapping, Iterator, Dict, Tuple, Set, FrozenSet +from typing import Any, Union, Optional, Mapping, Iterator, Dict, Tuple, FrozenSet import typing import contextlib import loopy as lp import numpy as np -import pymbolic.mapper import pymbolic.primitives as prim import pytools -from pytato.array import Array, DictOfNamedArrays, Placeholder, Output, Namespace, ShapeType, IndexLambda +from pytato.array import ( + Array, DictOfNamedArrays, Placeholder, Output, Namespace, ShapeType, + IndexLambda) from pytato.program import BoundProgram, Target, PyOpenCLTarget -import pytato.symbolic as sym -from pytato.symbolic import ScalarExpression +import pytato.scalar_expr as scalar_expr +from pytato.scalar_expr import ScalarExpression +import pytato.transform -# These are semantically distinct but identical at the type level. -SymbolicIndex = ShapeType +__doc__ = """ + +.. currentmodule:: pytato + +.. autofunction:: generate_loopy + +Code Generation Internals +------------------------- + +.. currentmodule:: pytato.codegen + +.. autoclass:: GeneratedResult +.. autoclass:: ArrayResult +.. autoclass:: LoopyExpressionResult +.. autoclass:: SubstitutionRuleResult + +.. autoclass:: CodeGenState +.. autoclass:: CodeGenMapper +.. autoclass:: LoopyExpressionContext +.. autoclass:: LoopyExpressionGenMapper -# {{{ nodal result +""" -class NodalResult(object): +# {{{ generated array expressions + +# These are semantically distinct but identical at the type level. +SymbolicIndex = ShapeType + + +class GeneratedResult(object): + """Generated code for a node in the computation graph (i.e., an array + expression). + """ def __init__(self, shape: ShapeType, dtype: np.dtype): self.shape = shape self.dtype = dtype @@ -37,98 +85,133 @@ class NodalResult(object): def ndim(self) -> int: return len(self.shape) - def to_loopy_expression(self, indices: SymbolicIndex, context: ExpressionContext, reduction_inames: Optional[Tuple[str, ...]] = None) -> ScalarExpression: + def to_loopy_expression(self, indices: SymbolicIndex, + context: LoopyExpressionContext) -> ScalarExpression: + """Return a :mod:`loopy` expression for this result.""" raise NotImplementedError -class ArrayResult(NodalResult): - +class ArrayResult(GeneratedResult): + """An array expression generated as a :mod:`loopy` array.""" def __init__(self, name: str, shape: ShapeType, dtype: np.dtype): - # TODO: Stuff dependencies in here. super().__init__(shape, dtype) self.name = name - def to_loopy_expression(self, indices: SymbolicIndex, context: ExpressionContext, reduction_inames: Optional[Tuple[str, ...]] = None) -> ScalarExpression: + # TODO: Handle dependencies. + def to_loopy_expression(self, indices: SymbolicIndex, + context: LoopyExpressionContext) -> ScalarExpression: if indices == (): return prim.Variable(self.name) else: return prim.Variable(self.name)[indices] -class ExpressionResult(NodalResult): - - def __init__(self, expr: ScalarExpression, shape: ShapeType, dtype: np.dtype): +class LoopyExpressionResult(GeneratedResult): + """An array expression generated as a :mod:`loopy` expression.""" + def __init__( + self, expr: ScalarExpression, shape: ShapeType, dtype: np.dtype): super().__init__(shape, dtype) self.expr = expr - def to_loopy_expression(self, indices: SymbolicIndex, context: ExpressionContext, reduction_inames: Optional[Tuple[str, ...]] = None) -> ScalarExpression: - return sym.substitute( + # TODO: Handle dependencies and reduction domains. + def to_loopy_expression(self, indices: SymbolicIndex, + context: LoopyExpressionContext) -> ScalarExpression: + return scalar_expr.substitute( self.expr, - dict(zip( - (f"_{d}" for d in range(self.ndim)), - indices))) + dict(zip((f"_{d}" for d in range(self.ndim)), indices))) -class SubstitutionRuleResult(NodalResult): +class SubstitutionRuleResult(GeneratedResult): # TODO: implement pass # }}} -class ExpressionGenMapper(sym.IdentityMapper): - """A mapper for generating :mod:`loopy` expressions. +# {{{ codegen + +@dataclasses.dataclass(init=True, repr=False, eq=False) +class CodeGenState: + """Data threaded through :class:`CodeGenMapper`. + + .. attribute:: namespace + + The namespace + + .. attribute:: kernel - The inputs to this mapper are :class:`IndexLambda` expressions, or - expressions that are closely equivalent (e.g., shape expressions). In - particular + The partial kernel + + .. attribute:: results + + A mapping from arrays to code generation results + + .. attribute:: var_name_gen + .. attribute:: insn_id_gen + + .. automethod:: update_kernel + .. automethod:: chain_namespaces + .. automethod:: make_expression_context """ - codegen_mapper: CodeGenMapper + namespace: typing.ChainMap[str, Array] + _kernel: lp.LoopKernel + results: Dict[Array, GeneratedResult] - def __init__(self, codegen_mapper: CodeGenMapper): - self.codegen_mapper = codegen_mapper + # Both of these have type Callable[[str], str], but mypy's support for that + # is broken (https://github.com/python/mypy/issues/6910) + var_name_gen: Any = dataclasses.field(init=False) + insn_id_gen: Any = dataclasses.field(init=False) - def __call__(self, - expr: ScalarExpression, - indices: Tuple[ScalarExpression, ...], - context: ExpressionContext) -> ScalarExpression: - return self.rec(expr, indices, context) + def __post_init__(self) -> None: + self.var_name_gen = self._kernel.get_var_name_generator() + self.insn_id_gen = self._kernel.get_var_name_generator() - def map_subscript(self, expr: prim.Subscript, indices: SymbolicIndex, context: ExpressionContext) -> ScalarExpression: - assert isinstance(expr.aggregate, prim.Variable) - result: NodalResult = self.codegen_mapper( - context.namespace[expr.aggregate.name], - context.state) - assert len(expr.index) == len(indices) - mapped_indices = sym.substitute( - expr.index, - dict(zip( - (f"_{d}" for d in range(len(indices))), - indices))) - return result.to_loopy_expression(mapped_indices, context) + @property + def kernel(self) -> lp.LoopKernel: + return self._kernel - # TODO: map_reduction() + def update_kernel(self, kernel: lp.LoopKernel) -> None: + self._kernel = kernel - def map_variable(self, expr: prim.Variable, indices: SymbolicIndex, context: ExpressionContext) -> ScalarExpression: - result: NodalResult = self.codegen_mapper( - context.namespace[expr.name], - context.state) - return result.to_loopy_expression((), context) + @contextlib.contextmanager + def chain_namespaces( + self, + local_namespace: Mapping[str, Array]) -> Iterator[CodeGenState]: + """A context manager for overriding with a local scope.""" + self.namespace.maps.insert(0, local_namespace) + yield self + self.namespace.maps.pop(0) + + def make_expression_context( + self, + depends_on: FrozenSet[str] = frozenset(), + reduction_bounds: Optional[ReductionBounds] = None + ) -> LoopyExpressionContext: + """Get a new :class:`LoopyExpressionContext`.""" + if reduction_bounds is None: + reduction_bounds = {} + return LoopyExpressionContext(self, + _depends_on=depends_on, + reduction_bounds=reduction_bounds) -class CodeGenMapper(pymbolic.mapper.Mapper): +class CodeGenMapper(pytato.transform.Mapper): """A mapper for generating code for nodes in the computation graph. """ - exprgen_mapper: ExpressionGenMapper + exprgen_mapper: LoopyExpressionGenMapper def __init__(self) -> None: - self.exprgen_mapper = ExpressionGenMapper(self) + self.exprgen_mapper = LoopyExpressionGenMapper(self) - def map_placeholder(self, expr: Placeholder, state: CodeGenState) -> NodalResult: + def map_placeholder(self, expr: Placeholder, + state: CodeGenState) -> GeneratedResult: if expr in state.results: return state.results[expr] - arg = lp.GlobalArg(expr.name, shape=expr.shape, dtype=expr.dtype, order="C") + arg = lp.GlobalArg(expr.name, + shape=expr.shape, + dtype=expr.dtype, + order="C") kernel = state.kernel.copy(args=state.kernel.args + [arg]) state.update_kernel(kernel) @@ -136,7 +219,7 @@ class CodeGenMapper(pymbolic.mapper.Mapper): state.results[expr] = result return result - def map_output(self, expr: Output, state: CodeGenState) -> NodalResult: + def map_output(self, expr: Output, state: CodeGenState) -> GeneratedResult: if expr in state.results: return state.results[expr] @@ -144,14 +227,13 @@ class CodeGenMapper(pymbolic.mapper.Mapper): assert expr.shape != () inner_result = self.rec(expr.array, state) - + inames = tuple( state.var_name_gen(f"{expr.name}_dim{d}") for d in range(expr.ndim)) - domain = sym.domain_for_shape(inames, expr.shape) + domain = scalar_expr.domain_for_shape(inames, expr.shape) - arg = lp.GlobalArg( - expr.name, + arg = lp.GlobalArg(expr.name, shape=expr.shape, dtype=expr.dtype, order="C", @@ -160,21 +242,20 @@ class CodeGenMapper(pymbolic.mapper.Mapper): indices = tuple(prim.Variable(iname) for iname in inames) context = state.make_expression_context() copy_expr = inner_result.to_loopy_expression(indices, context) - # TODO: Context data supported yet. + + # TODO: Contextual data not supported yet. assert not context.reduction_bounds - assert not context.depends_on, context.depends_on + assert not context.depends_on from loopy.kernel.instruction import make_assignment - insn = make_assignment( - (prim.Variable(expr.name)[indices],), + insn = make_assignment((prim.Variable(expr.name)[indices], ), copy_expr, id=state.insn_id_gen(f"{expr.name}_copy"), within_inames=frozenset(inames), depends_on=context.depends_on) kernel = state.kernel - kernel = kernel.copy( - args=kernel.args + [arg], + kernel = kernel.copy(args=kernel.args + [arg], instructions=kernel.instructions + [insn], domains=kernel.domains + [domain]) state.update_kernel(kernel) @@ -183,84 +264,55 @@ class CodeGenMapper(pymbolic.mapper.Mapper): state.results[expr] = result return result - def map_index_lambda(self, expr: IndexLambda, state: CodeGenState) -> NodalResult: + def map_index_lambda(self, expr: IndexLambda, + state: CodeGenState) -> GeneratedResult: if expr in state.results: return state.results[expr] - # TODO: tags + # TODO: Respect tags. with state.chain_namespaces(expr.bindings) as chained_state: expr_context = chained_state.make_expression_context() - indices = tuple(prim.Variable(f"_{d}") for d in range(expr.ndim)) - generated_expr = self.exprgen_mapper(expr.expr, indices, expr_context) + loopy_expr = self.exprgen_mapper(expr.expr, expr_context) - result = ExpressionResult(generated_expr, expr.shape, expr.dtype) + result = LoopyExpressionResult(loopy_expr, expr.shape, expr.dtype) state.results[expr] = result return result +# }}} -@dataclasses.dataclass(init=True, repr=False, eq=False) -class CodeGenState: - """ - This data is threaded through :class:`CodeGenMapper`. - - .. attribute:: namespace - .. attribute:: kernel - .. attribute:: results - .. attribute:: var_name_gen - .. attribute:: insn_id_gen - """ - namespace: typing.ChainMap[str, Array] - _kernel: lp.LoopKernel - results: Dict[Array, NodalResult] - # Both of these have type Callable[[str], str], but mypy's support for that is broken. - var_name_gen: Any = dataclasses.field(init=False) - insn_id_gen: Any = dataclasses.field(init=False) - - def __post_init__(self) -> None: - self.var_name_gen = self._kernel.get_var_name_generator() - self.insn_id_gen = self._kernel.get_var_name_generator() - - @property - def kernel(self) -> lp.LoopKernel: - return self._kernel - - def update_kernel(self, kernel: lp.LoopyKernel) -> None: - self._kernel = kernel - - @contextlib.contextmanager - def chain_namespaces(self, local_namespace: Mapping[str, Array]) -> Iterator[CodeGenState]: - self.namespace.maps.insert(0, local_namespace) - yield self - self.namespace.maps.pop(0) - - def make_expression_context(self, depends_on: FrozenSet[str] = frozenset(), reduction_bounds: Optional[ReductionBounds] = None) -> ExpressionContext: - if reduction_bounds is None: - reduction_bounds = {} - return ExpressionContext(self, _depends_on=depends_on, reduction_bounds=reduction_bounds) +# {{{ loopy expression gen mapper ReductionBounds = Dict[str, Tuple[ScalarExpression, ScalarExpression]] @dataclasses.dataclass(init=True, repr=False, eq=False) -class ExpressionContext(object): +class LoopyExpressionContext(object): """Contextual data for generating :mod:`loopy` expressions. - This data is threaded through :class:`ExpressionGenMapper`. + This data is threaded through :class:`LoopyExpressionGenMapper`. .. attribute:: state + + The :class:`CodeGenState`. + .. attribute:: _depends_on + + The set of dependencies associated with the expression. + .. attribute:: reduction_bounds + + A mapping from inames to reduction bounds in the expression. """ state: CodeGenState _depends_on: FrozenSet[str] - reduction_bounds: Dict[str, Tuple[ScalarExpression, ScalarExpression]] + reduction_bounds: ReductionBounds @property def namespace(self) -> typing.ChainMap[str, Array]: return self.state.namespace - + @property def depends_on(self) -> FrozenSet[str]: return self._depends_on @@ -269,31 +321,82 @@ class ExpressionContext(object): self._depends_on = self._depends_on | other -def generate_loopy(result: Union[Namespace, Array, DictOfNamedArrays], - target: Optional[Target] = None) -> BoundProgram: - # {{{ get namespace +class LoopyExpressionGenMapper(scalar_expr.IdentityMapper): + """A mapper for generating :mod:`loopy` expressions. - if isinstance(result, Array): - if isinstance(result, Output): - result = result.namespace - else: - result = DictOfNamedArrays({"_out": result}) + The inputs to this mapper are scalar expression as found in + :class:`pytato.IndexLambda`, or expressions that are compatible (e.g., shape + expressions). - if isinstance(result, DictOfNamedArrays): - namespace = result.namespace._chain() + The outputs of this mapper are scalar expressions suitable for wrapping in + :class:`LoopyExpressionResult`. + """ + codegen_mapper: CodeGenMapper - # Augment with Output nodes. - name_gen = pytools.UniqueNameGenerator(set(namespace)) - for name, val in result.items(): - out_name = name_gen(name) - Output(namespace, out_name, val) + def __init__(self, codegen_mapper: CodeGenMapper): + self.codegen_mapper = codegen_mapper - result = namespace.copy() + def __call__(self, expr: ScalarExpression, + context: LoopyExpressionContext) -> ScalarExpression: + return self.rec(expr, context) - assert isinstance(result, Namespace) - - # Make an internal copy. - result = result.copy() + def map_subscript(self, expr: prim.Subscript, + context: LoopyExpressionContext) -> ScalarExpression: + assert isinstance(expr.aggregate, prim.Variable) + result: GeneratedResult = self.codegen_mapper( + context.namespace[expr.aggregate.name], context.state) + return result.to_loopy_expression(expr.index, context) + + # TODO: map_reduction() + + def map_variable(self, expr: prim.Variable, + context: LoopyExpressionContext) -> ScalarExpression: + result: GeneratedResult = self.codegen_mapper( + context.namespace[expr.name], + context.state) + return result.to_loopy_expression((), context) + +# }}} + + +def _promote_named_arrays_to_outputs(arrays: DictOfNamedArrays) -> Namespace: + # Turns named arrays into Output nodes, returning a new namespace. + copy_mapper = pytato.transform.CopyMapper(Namespace()) + result = pytato.transform.copy_namespace(arrays.namespace, copy_mapper) + + name_gen = pytools.UniqueNameGenerator(set(result)) + for name, val in arrays.items(): + Output(result, name_gen(name), copy_mapper(val)) + + return result + + +def generate_loopy( + result_or_namespace: Union[Namespace, Array, DictOfNamedArrays], + target: Optional[Target] = None) -> BoundProgram: + """Code generation entry point. + + :param result_or_namespace: Either a :class:`pytato.Namespace`, a single + :class:`pytato.Array`, or a :class:`pytato.DictOfNamedArrays`. In the + latter two cases, code generation treats the node(s) as outputs of the + computation. + + :param target: The target for code generation + + :returns: A wrapped generated :mod:`loopy` kernel + """ + # {{{ get namespace + + if isinstance(result_or_namespace, Array): + result_or_namespace = DictOfNamedArrays({"out": result_or_namespace}) + + if isinstance(result_or_namespace, DictOfNamedArrays): + result_or_namespace = _promote_named_arrays_to_outputs( + result_or_namespace) + + assert isinstance(result_or_namespace, Namespace) + namespace = result_or_namespace + del result_or_namespace # }}} @@ -301,18 +404,17 @@ def generate_loopy(result: Union[Namespace, Array, DictOfNamedArrays], target = PyOpenCLTarget() # Set up codegen state. - kernel = lp.make_kernel( - "{:}", [], target=target.get_loopy_target(), + kernel = lp.make_kernel("{:}", [], + target=target.get_loopy_target(), lang_version=lp.MOST_RECENT_LANGUAGE_VERSION) - - state = CodeGenState( - namespace=collections.ChainMap(result), + + state = CodeGenState(namespace=collections.ChainMap(namespace), _kernel=kernel, results=dict()) # Generate code for graph nodes. mapper = CodeGenMapper() - for name, val in result.items(): + for name, val in namespace.items(): _ = mapper(val, state) return target.bind_program(program=state.kernel, bound_arguments=dict()) diff --git a/pytato/program.py b/pytato/program.py index 4a3660202611a9bbfd08ed766534c9cec25f1fb2..4e0506fba37c43e61f7835e19846d326d33032ea 100644 --- a/pytato/program.py +++ b/pytato/program.py @@ -51,7 +51,12 @@ if typing.TYPE_CHECKING: class Target: - """An abstract code generation target.""" + """An abstract code generation target. + + .. automethod:: get_loopy_target + .. automethod:: bind_program + """ + def get_loopy_target(self) -> "lp.TargetBase": """Return the corresponding :mod:`loopy` target.""" raise NotImplementedError @@ -60,14 +65,20 @@ class Target: bound_arguments: Mapping[str, Any]) -> BoundProgram: """Create a :class:`BoundProgram` for this code generation target. - :arg program: the :mod:`loopy` kernel - :arg bound_arguments: a mapping from argument names to outputs + :param program: the :mod:`loopy` kernel + :param bound_arguments: a mapping from argument names to outputs """ raise NotImplementedError class PyOpenCLTarget(Target): - """A :mod:`pyopencl` code generation target.""" + """A :mod:`pyopencl` code generation target. + + .. attribute:: queue + + The :mod:`pyopencl` command queue, or *None*. + """ + def __init__(self, queue: Optional["cl.CommandQueue"] = None): self.queue = queue @@ -101,6 +112,8 @@ class BoundProgram: .. attribute:: bound_arguments A map from names to pre-bound kernel arguments. + + .. automethod:: __call__ """ program: "lp.LoopKernel" @@ -118,6 +131,8 @@ class BoundPyOpenCLProgram(BoundProgram): .. attribute:: queue A :mod:`pyopencl` command queue. + + .. automethod:: __call__ """ queue: Optional["cl.CommandQueue"] diff --git a/pytato/stubs/pytools.pyi b/pytato/stubs/pytools.pyi index 82531cc621a422514f005fc22fa12acb68e3b25d..2fe9afc4da9c6a2560b4c8c2758cdf98ffc6748f 100644 --- a/pytato/stubs/pytools.pyi +++ b/pytato/stubs/pytools.pyi @@ -1,5 +1,5 @@ # FIXME: Should be in pytools -from typing import TypeVar, Iterable, Optional +from typing import TypeVar, Iterable, Set, Optional T = TypeVar("T") @@ -7,5 +7,5 @@ def memoize_method(f: T) -> T: ... def is_single_valued(it: Iterable[T]) -> bool: ... class UniqueNameGenerator: - def __init__(self, existing_names: Optional[Iterable[str]], forced_prefix: str=""): ... + def __init__(self, existing_names: Optional[Set[str]], forced_prefix: str=""): ... def __call__(self, based_on: str = "") -> str: ... diff --git a/setup.cfg b/setup.cfg index 7c3f3d4f4d3899bdd0e89aae18a5625b2e8ac334..b0d0924987b6cad885c759657f6fbc171aa59c4f 100644 --- a/setup.cfg +++ b/setup.cfg @@ -2,7 +2,7 @@ ignore = E126,E127,E128,E123,E226,E241,E242,E265,N802,W503,E402,N814,N817,W504 max-line-length=85 -[mypy-pytato.array_expr] +[mypy-pytato.transform] disallow_subclassing_any = False [mypy-pytato.scalar_expr] diff --git a/test/test_codegen.py b/test/test_codegen.py new file mode 100755 index 0000000000000000000000000000000000000000..e93200d922f1ec3c3dc14bd298fd5a3e978891dc --- /dev/null +++ b/test/test_codegen.py @@ -0,0 +1,60 @@ +#!/usr/bin/env python + +__copyright__ = "Copyright (C) 2020 Andreas Kloeckner" + +__license__ = """ +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +""" + +import sys + +import numpy as np +import pyopencl as cl +import pyopencl.array as cl_array # noqa +import pyopencl.cltypes as cltypes # noqa +import pyopencl.tools as cl_tools # noqa +from pyopencl.tools import ( # noqa + pytest_generate_tests_for_pyopencl as pytest_generate_tests) +import pytest # noqa + +import pytato as pt + + +def test_basic_codegen(ctx_factory): + ctx = ctx_factory() + queue = cl.CommandQueue(ctx) + + namespace = pt.Namespace() + x = pt.Placeholder(namespace, "x", (5,), np.int) + prog = pt.generate_loopy(x * x, target=pt.PyOpenCLTarget(queue)) + x_in = np.array([1, 2, 3, 4, 5]) + _, (out,) = prog(x=x_in) + assert (out == x_in * x_in).all() + + +if __name__ == "__main__": + # make sure that import failures get reported, instead of skipping the + # tests. + if len(sys.argv) > 1: + exec(sys.argv[1]) + else: + from pytest import main + main([__file__]) + +# vim: filetype=pyopencl:fdm=marker