from __future__ import division __copyright__ = "Copyright (C) 2009 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math import numpy as np def have_cl(): try: import pyopencl return True except: return False if have_cl(): import pyopencl.array as cl_array import pyopencl as cl import pyopencl.clmath as clmath from pyopencl.tools import pytest_generate_tests_for_pyopencl \ as pytest_generate_tests from pyopencl.characterize import has_double_support sizes = [10, 128, 1<<10, 1<<11, 1<<13] numpy_func_names = { "asin": "arcsin", "acos": "arccos", "atan": "arctan", } def make_unary_function_test(name, limits=(0, 1), threshold=0, use_complex=False): (a, b) = limits a = float(a) b = float(b) def test(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) gpu_func = getattr(clmath, name) cpu_func = getattr(np, numpy_func_names.get(name, name)) if has_double_support(context.devices[0]): if use_complex: dtypes = [np.float32, np.float64, np.complex64, np.complex128] else: dtypes = [np.float32, np.float64] else: if use_complex: dtypes = [np.float32, np.complex64] else: dtypes = [np.float32] for s in sizes: for dtype in dtypes: dtype = np.dtype(dtype) args = cl_array.arange(queue, a, b, (b-a)/s, dtype=dtype) if dtype.kind == "c": args = args+dtype.type(1j)*args gpu_results = gpu_func(args).get() cpu_results = cpu_func(args.get()) my_threshold = threshold if dtype.kind == "c" and isinstance(use_complex, float): my_threshold = use_complex max_err = np.max(np.abs(cpu_results - gpu_results)) assert (max_err <= my_threshold).all(), \ (max_err, name, dtype) return test if have_cl(): test_ceil = make_unary_function_test("ceil", (-10, 10)) test_floor = make_unary_function_test("ceil", (-10, 10)) test_fabs = make_unary_function_test("fabs", (-10, 10)) test_exp = make_unary_function_test("exp", (-3, 3), 1e-5, use_complex=True) test_log = make_unary_function_test("log", (1e-5, 1), 1e-6, use_complex=True) test_log10 = make_unary_function_test("log10", (1e-5, 1), 5e-7) test_sqrt = make_unary_function_test("sqrt", (1e-5, 1), 3e-7, use_complex=True) test_sin = make_unary_function_test("sin", (-10, 10), 2e-7, use_complex=2e-2) test_cos = make_unary_function_test("cos", (-10, 10), 2e-7, use_complex=2e-2) test_asin = make_unary_function_test("asin", (-0.9, 0.9), 5e-7) test_acos = make_unary_function_test("acos", (-0.9, 0.9), 5e-7) test_tan = make_unary_function_test("tan", (-math.pi/2 + 0.1, math.pi/2 - 0.1), 4e-5, use_complex=True) test_atan = make_unary_function_test("atan", (-10, 10), 2e-7) test_sinh = make_unary_function_test("sinh", (-3, 3), 2e-6, use_complex=2e-3) test_cosh = make_unary_function_test("cosh", (-3, 3), 2e-6, use_complex=2e-3) test_tanh = make_unary_function_test("tanh", (-3, 3), 2e-6, use_complex=True) def test_fmod(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 a2 = cl_array.arange(queue, s, dtype=np.float32)/45.2 + 0.1 b = clmath.fmod(a, a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert math.fmod(a[i], a2[i]) == b[i] def test_ldexp(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32) a2 = cl_array.arange(queue, s, dtype=np.float32)*1e-3 b = clmath.ldexp(a,a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert math.ldexp(a[i], int(a2[i])) == b[i] def test_modf(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 fracpart, intpart = clmath.modf(a) a = a.get() intpart = intpart.get() fracpart = fracpart.get() for i in range(s): fracpart_true, intpart_true = math.modf(a[i]) assert intpart_true == intpart[i] assert abs(fracpart_true - fracpart[i]) < 1e-4 def test_frexp(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 significands, exponents = clmath.frexp(a) a = a.get() significands = significands.get() exponents = exponents.get() for i in range(s): sig_true, ex_true = math.frexp(a[i]) assert sig_true == significands[i] assert ex_true == exponents[i] def test_bessel(ctx_factory): try: import scipy.special as spec except ImportError: from pytest import skip skip("scipy not present--cannot test Bessel function") ctx = ctx_factory() queue = cl.CommandQueue(ctx) if not has_double_support(ctx.devices[0]): from pytest import skip skip("no double precision support--cannot test bessel function") nterms = 30 try: from pyfmmlib import jfuns2d, hank103_vec except ImportError: use_pyfmmlib = False else: use_pyfmmlib = True print("PYFMMLIB", use_pyfmmlib) if use_pyfmmlib: a = np.logspace(-3, 3, 10**6) else: a = np.logspace(-5, 5, 10**6) for which_func, cl_func, scipy_func, is_rel in [ ("j", clmath.bessel_jn, spec.jn, False), ("y", clmath.bessel_yn, spec.yn, True) ]: if is_rel: def get_err(check, ref): return np.max(np.abs(check-ref)) / np.max(np.abs(ref)) else: def get_err(check, ref): return np.max(np.abs(check-ref)) if use_pyfmmlib: pfymm_result = np.empty((len(a), nterms), dtype=np.complex128) if which_func == "j": for i, a_i in enumerate(a): if i % 100000 == 0: print("%.1f %%" % (100 * i/len(a))) ier, fjs, _, _ = jfuns2d(nterms, a_i, 1, 0, 10000) pfymm_result[i] = fjs[:nterms] assert ier == 0 elif which_func == "y": h0, h1 = hank103_vec(a, ifexpon=1) pfymm_result[:, 0] = h0.imag pfymm_result[:, 1] = h1.imag a_dev = cl_array.to_device(queue, a) for n in range(0, nterms): cl_bessel = cl_func(n, a_dev).get() scipy_bessel = scipy_func(n, a) error_scipy = get_err(cl_bessel, scipy_bessel) assert error_scipy < 1e-10, error_scipy if use_pyfmmlib and ( which_func == "j" or (which_func == "y" and n in [0, 1])): pyfmm_bessel = pfymm_result[:, n] error_pyfmm = get_err(cl_bessel, pyfmm_bessel) assert error_pyfmm < 1e-10, error_pyfmm error_pyfmm_scipy = get_err(scipy_bessel, pyfmm_bessel) print(which_func, n, error_scipy, error_pyfmm, error_pyfmm_scipy) else: print(which_func, n, error_scipy) assert not np.isnan(cl_bessel).any() if 0 and n == 15: import matplotlib.pyplot as pt #pt.plot(scipy_bessel) #pt.plot(cl_bessel) pt.loglog(a, np.abs(cl_bessel-scipy_bessel), label="vs scipy") if use_pyfmmlib: pt.loglog(a, np.abs(cl_bessel-hk_bessel), label="vs pyfmmlib") pt.legend() pt.show() if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__])