from __future__ import absolute_import # Visualization of particles with gravity # Source: http://enja.org/2010/08/27/adventures-in-opencl-part-2-particles-with-opengl/ import pyopencl as cl # OpenCL - GPU computing interface mf = cl.mem_flags from pyopencl.tools import get_gl_sharing_context_properties from OpenGL.GL import * # OpenGL - GPU rendering interface from OpenGL.GLU import * # OpenGL tools (mipmaps, NURBS, perspective projection, shapes) from OpenGL.GLUT import * # OpenGL tool to make a visualization window from OpenGL.arrays import vbo import numpy # Number tools import sys # System tools (path, modules, maxint) width = 800 height = 600 num_particles = 100000 time_step = .005 mouse_down = False mouse_old = {'x': 0., 'y': 0.} rotate = {'x': 0., 'y': 0., 'z': 0.} translate = {'x': 0., 'y': 0., 'z': 0.} initial_translate = {'x': 0., 'y': 0., 'z': -2.5} def glut_window(): glutInit(sys.argv) glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH) glutInitWindowSize(width, height) glutInitWindowPosition(0, 0) window = glutCreateWindow("Particle Simulation") glutDisplayFunc(on_display) # Called by GLUT every frame glutKeyboardFunc(on_key) glutMouseFunc(on_click) glutMotionFunc(on_mouse_move) glutTimerFunc(10, on_timer, 10) # Call draw every 30 ms glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(60., width / float(height), .1, 1000.) return(window) def initial_buffers(num_particles): np_position = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_color = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_velocity = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_position[:,0] = numpy.sin(numpy.arange(0., num_particles) * 2.001 * numpy.pi / num_particles) np_position[:,0] *= numpy.random.random_sample((num_particles,)) / 3. + .2 np_position[:,1] = numpy.cos(numpy.arange(0., num_particles) * 2.001 * numpy.pi / num_particles) np_position[:,1] *= numpy.random.random_sample((num_particles,)) / 3. + .2 np_position[:,2] = 0. np_position[:,3] = 1. np_color[:,:] = [1.,1.,1.,1.] # White particles np_velocity[:,0] = np_position[:,0] * 2. np_velocity[:,1] = np_position[:,1] * 2. np_velocity[:,2] = 3. np_velocity[:,3] = numpy.random.random_sample((num_particles, )) gl_position = vbo.VBO(data=np_position, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER) gl_position.bind() gl_color = vbo.VBO(data=np_color, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER) gl_color.bind() return (np_position, np_velocity, gl_position, gl_color) def on_timer(t): glutTimerFunc(t, on_timer, t) glutPostRedisplay() def on_key(*args): if args[0] == '\033' or args[0] == 'q': sys.exit() def on_click(button, state, x, y): mouse_old['x'] = x mouse_old['y'] = y def on_mouse_move(x, y): rotate['x'] += (y - mouse_old['y']) * .2 rotate['y'] += (x - mouse_old['x']) * .2 mouse_old['x'] = x mouse_old['y'] = y def on_display(): """Render the particles""" # Update or particle positions by calling the OpenCL kernel cl.enqueue_acquire_gl_objects(queue, [cl_gl_position, cl_gl_color]) kernelargs = (cl_gl_position, cl_gl_color, cl_velocity, cl_start_position, cl_start_velocity, numpy.float32(time_step)) program.particle_fountain(queue, (num_particles,), None, *(kernelargs)) cl.enqueue_release_gl_objects(queue, [cl_gl_position, cl_gl_color]) queue.finish() glFlush() glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glMatrixMode(GL_MODELVIEW) glLoadIdentity() # Handle mouse transformations glTranslatef(initial_translate['x'], initial_translate['y'], initial_translate['z']) glRotatef(rotate['x'], 1, 0, 0) glRotatef(rotate['y'], 0, 1, 0) #we switched around the axis so make this rotate_z glTranslatef(translate['x'], translate['y'], translate['z']) # Render the particles glEnable(GL_POINT_SMOOTH) glPointSize(2) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) # Set up the VBOs gl_color.bind() glColorPointer(4, GL_FLOAT, 0, gl_color) gl_position.bind() glVertexPointer(4, GL_FLOAT, 0, gl_position) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) # Draw the VBOs glDrawArrays(GL_POINTS, 0, num_particles) glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) glDisable(GL_BLEND) glutSwapBuffers() window = glut_window() (np_position, np_velocity, gl_position, gl_color) = initial_buffers(num_particles) platform = cl.get_platforms()[0] context = cl.Context(properties=[(cl.context_properties.PLATFORM, platform)] + get_gl_sharing_context_properties()) queue = cl.CommandQueue(context) cl_velocity = cl.Buffer(context, mf.COPY_HOST_PTR, hostbuf=np_velocity) cl_start_position = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_position) cl_start_velocity = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_velocity) cl_gl_position = cl.GLBuffer(context, mf.READ_WRITE, int(gl_position)) cl_gl_color = cl.GLBuffer(context, mf.READ_WRITE, int(gl_color)) kernel = """__kernel void particle_fountain(__global float4* position, __global float4* color, __global float4* velocity, __global float4* start_position, __global float4* start_velocity, float time_step) { unsigned int i = get_global_id(0); float4 p = position[i]; float4 v = velocity[i]; float life = velocity[i].w; life -= time_step; if (life <= 0.f) { p = start_position[i]; v = start_velocity[i]; life = 1.0f; } v.z -= 9.8f*time_step; p.x += v.x*time_step; p.y += v.y*time_step; p.z += v.z*time_step; v.w = life; position[i] = p; velocity[i] = v; color[i].w = life; /* Fade points as life decreases */ }""" program = cl.Program(context, kernel).build() glutMainLoop()