from __future__ import division, print_function from __future__ import absolute_import from six.moves import range __copyright__ = "Copyright (C) 2009 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math import numpy as np import pytest import pyopencl.array as cl_array import pyopencl as cl import pyopencl.clmath as clmath from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from pyopencl.characterize import has_double_support, has_struct_arg_count_bug try: import faulthandler except ImportError: pass else: faulthandler.enable() sizes = [10, 128, 1 << 10, 1 << 11, 1 << 13] numpy_func_names = { "asin": "arcsin", "acos": "arccos", "atan": "arctan", } def make_unary_function_test(name, limits=(0, 1), threshold=0, use_complex=False): (a, b) = limits a = float(a) b = float(b) def test(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) gpu_func = getattr(clmath, name) cpu_func = getattr(np, numpy_func_names.get(name, name)) dev = context.devices[0] if has_double_support(dev): if use_complex and has_struct_arg_count_bug(dev) == "apple": dtypes = [np.float32, np.float64, np.complex64] elif use_complex: dtypes = [np.float32, np.float64, np.complex64, np.complex128] else: dtypes = [np.float32, np.float64] else: if use_complex: dtypes = [np.float32, np.complex64] else: dtypes = [np.float32] for s in sizes: for dtype in dtypes: dtype = np.dtype(dtype) args = cl_array.arange(queue, a, b, (b-a)/s, dtype=dtype) if dtype.kind == "c": # args = args + dtype.type(1j) * args args = args + args * dtype.type(1j) gpu_results = gpu_func(args).get() cpu_results = cpu_func(args.get()) my_threshold = threshold if dtype.kind == "c" and isinstance(use_complex, float): my_threshold = use_complex max_err = np.max(np.abs(cpu_results - gpu_results)) assert (max_err <= my_threshold).all(), \ (max_err, name, dtype) return test test_ceil = make_unary_function_test("ceil", (-10, 10)) test_floor = make_unary_function_test("ceil", (-10, 10)) test_fabs = make_unary_function_test("fabs", (-10, 10)) test_exp = make_unary_function_test("exp", (-3, 3), 1e-5, use_complex=True) test_log = make_unary_function_test("log", (1e-5, 1), 1e-6, use_complex=True) test_log10 = make_unary_function_test("log10", (1e-5, 1), 5e-7) test_sqrt = make_unary_function_test("sqrt", (1e-5, 1), 3e-7, use_complex=True) test_sin = make_unary_function_test("sin", (-10, 10), 2e-7, use_complex=2e-2) test_cos = make_unary_function_test("cos", (-10, 10), 2e-7, use_complex=2e-2) test_asin = make_unary_function_test("asin", (-0.9, 0.9), 5e-7) test_acos = make_unary_function_test("acos", (-0.9, 0.9), 5e-7) test_tan = make_unary_function_test("tan", (-math.pi/2 + 0.1, math.pi/2 - 0.1), 4e-5, use_complex=True) test_atan = make_unary_function_test("atan", (-10, 10), 2e-7) test_sinh = make_unary_function_test("sinh", (-3, 3), 3e-6, use_complex=2e-3) test_cosh = make_unary_function_test("cosh", (-3, 3), 3e-6, use_complex=2e-3) test_tanh = make_unary_function_test("tanh", (-3, 3), 2e-6, use_complex=True) def test_atan2(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100 a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100 b = clmath.atan2(a, a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert abs(math.atan2(a[i], a2[i]) - b[i]) < 1e-6 def test_atan2pi(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100 a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100 b = clmath.atan2pi(a, a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert abs(math.atan2(a[i], a2[i]) / math.pi - b[i]) < 1e-6 def test_fmod(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 a2 = cl_array.arange(queue, s, dtype=np.float32)/45.2 + 0.1 b = clmath.fmod(a, a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert math.fmod(a[i], a2[i]) == b[i] def test_ldexp(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32) a2 = cl_array.arange(queue, s, dtype=np.float32)*1e-3 b = clmath.ldexp(a, a2) a = a.get() a2 = a2.get() b = b.get() for i in range(s): assert math.ldexp(a[i], int(a2[i])) == b[i] def test_modf(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 fracpart, intpart = clmath.modf(a) a = a.get() intpart = intpart.get() fracpart = fracpart.get() for i in range(s): fracpart_true, intpart_true = math.modf(a[i]) assert intpart_true == intpart[i] assert abs(fracpart_true - fracpart[i]) < 1e-4 def test_frexp(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) for s in sizes: a = cl_array.arange(queue, s, dtype=np.float32)/10 significands, exponents = clmath.frexp(a) a = a.get() significands = significands.get() exponents = exponents.get() for i in range(s): sig_true, ex_true = math.frexp(a[i]) assert sig_true == significands[i] assert ex_true == exponents[i] def test_bessel(ctx_factory): try: import scipy.special as spec except ImportError: from pytest import skip skip("scipy not present--cannot test Bessel function") ctx = ctx_factory() queue = cl.CommandQueue(ctx) if not has_double_support(ctx.devices[0]): from pytest import skip skip("no double precision support--cannot test bessel function") nterms = 30 try: from pyfmmlib import jfuns2d, hank103_vec except ImportError: use_pyfmmlib = False else: use_pyfmmlib = True print("PYFMMLIB", use_pyfmmlib) if use_pyfmmlib: a = np.logspace(-3, 3, 10**6) else: a = np.logspace(-5, 5, 10**6) for which_func, cl_func, scipy_func, is_rel in [ ("j", clmath.bessel_jn, spec.jn, False), ("y", clmath.bessel_yn, spec.yn, True) ]: if is_rel: def get_err(check, ref): return np.max(np.abs(check-ref)) / np.max(np.abs(ref)) else: def get_err(check, ref): return np.max(np.abs(check-ref)) if use_pyfmmlib: pfymm_result = np.empty((len(a), nterms), dtype=np.complex128) if which_func == "j": for i, a_i in enumerate(a): if i % 100000 == 0: print("%.1f %%" % (100 * i/len(a))) ier, fjs, _, _ = jfuns2d(nterms, a_i, 1, 0, 10000) pfymm_result[i] = fjs[:nterms] assert ier == 0 elif which_func == "y": h0, h1 = hank103_vec(a, ifexpon=1) pfymm_result[:, 0] = h0.imag pfymm_result[:, 1] = h1.imag a_dev = cl_array.to_device(queue, a) for n in range(0, nterms): cl_bessel = cl_func(n, a_dev).get() scipy_bessel = scipy_func(n, a) error_scipy = get_err(cl_bessel, scipy_bessel) assert error_scipy < 1e-10, error_scipy if use_pyfmmlib and ( which_func == "j" or (which_func == "y" and n in [0, 1])): pyfmm_bessel = pfymm_result[:, n] error_pyfmm = get_err(cl_bessel, pyfmm_bessel) assert error_pyfmm < 1e-10, error_pyfmm error_pyfmm_scipy = get_err(scipy_bessel, pyfmm_bessel) print(which_func, n, error_scipy, error_pyfmm, error_pyfmm_scipy) else: print(which_func, n, error_scipy) assert not np.isnan(cl_bessel).any() if 0 and n == 15: import matplotlib.pyplot as pt #pt.plot(scipy_bessel) #pt.plot(cl_bessel) pt.loglog(a, np.abs(cl_bessel-scipy_bessel), label="vs scipy") if use_pyfmmlib: pt.loglog(a, np.abs(cl_bessel-pyfmm_bessel), label="vs pyfmmlib") pt.legend() pt.show() @pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"]) def test_complex_bessel(ctx_factory, ref_src): ctx = ctx_factory() queue = cl.CommandQueue(ctx) if not has_double_support(ctx.devices[0]): from pytest import skip skip("no double precision support--cannot test complex bessel function") v = 40 n = 10**5 np.random.seed(13) z = ( np.logspace(-5, 2, n) * np.exp(1j * 2 * np.pi * np.random.rand(n))) if ref_src == "pyfmmlib": pyfmmlib = pytest.importorskip("pyfmmlib") jv_ref = np.zeros(len(z), 'complex') vin = v+1 for i in range(len(z)): ier, fjs, _, _ = pyfmmlib.jfuns2d(vin, z[i], 1, 0, 10000) assert ier == 0 jv_ref[i] = fjs[v] elif ref_src == "scipy": spec = pytest.importorskip("scipy.special") jv_ref = spec.jv(v, z) else: raise ValueError("ref_src") z_dev = cl_array.to_device(queue, z) jv_dev = clmath.bessel_jn(v, z_dev) abs_err_jv = np.abs(jv_dev.get() - jv_ref) abs_jv_ref = np.abs(jv_ref) rel_err_jv = abs_err_jv/abs_jv_ref # use absolute error instead if the function value itself is too small tiny = 1e-300 ind = abs_jv_ref < tiny rel_err_jv[ind] = abs_err_jv[ind] # if the reference value is inf or nan, set the error to zero ind1 = np.isinf(abs_jv_ref) ind2 = np.isnan(abs_jv_ref) rel_err_jv[ind1] = 0 rel_err_jv[ind2] = 0 if 0: print(abs(z)) print(np.abs(jv_ref)) print(np.abs(jv_dev.get())) print(rel_err_jv) max_err = np.max(rel_err_jv) assert max_err <= 2e-13, max_err print("Jv", np.max(rel_err_jv)) if 0: import matplotlib.pyplot as pt pt.loglog(np.abs(z), rel_err_jv) pt.show() @pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"]) def test_hankel_01_complex(ctx_factory, ref_src): ctx = ctx_factory() queue = cl.CommandQueue(ctx) if not has_double_support(ctx.devices[0]): from pytest import skip skip("no double precision support--cannot test complex bessel function") n = 10**6 np.random.seed(11) z = ( np.logspace(-5, 2, n) * np.exp(1j * 2 * np.pi * np.random.rand(n))) def get_err(check, ref): return np.max(np.abs(check-ref)) / np.max(np.abs(ref)) if ref_src == "pyfmmlib": pyfmmlib = pytest.importorskip("pyfmmlib") h0_ref, h1_ref = pyfmmlib.hank103_vec(z, ifexpon=1) elif ref_src == "scipy": spec = pytest.importorskip("scipy.special") h0_ref = spec.hankel1(0, z) h1_ref = spec.hankel1(1, z) else: raise ValueError("ref_src") z_dev = cl_array.to_device(queue, z) h0_dev, h1_dev = clmath.hankel_01(z_dev) rel_err_h0 = np.abs(h0_dev.get() - h0_ref)/np.abs(h0_ref) rel_err_h1 = np.abs(h1_dev.get() - h1_ref)/np.abs(h1_ref) max_rel_err_h0 = np.max(rel_err_h0) max_rel_err_h1 = np.max(rel_err_h1) print("H0", max_rel_err_h0) print("H1", max_rel_err_h1) assert max_rel_err_h0 < 4e-13 assert max_rel_err_h1 < 2e-13 if 0: import matplotlib.pyplot as pt pt.loglog(np.abs(z), rel_err_h0) pt.loglog(np.abs(z), rel_err_h1) pt.show() if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__])