# I found this example for PyCuda here: # http://wiki.tiker.net/PyCuda/Examples/Mandelbrot # # I adapted it for PyOpenCL. Hopefully it is useful to someone. # July 2010, HolgerRapp@gmx.net # # Original readme below these lines. # Mandelbrot calculate using GPU, Serial numpy and faster numpy # Use to show the speed difference between CPU and GPU calculations # ian@ianozsvald.com March 2010 # Based on vegaseat's TKinter/numpy example code from 2006 # http://www.daniweb.com/code/snippet216851.html# # with minor changes to move to numpy from the obsolete Numeric import numpy as np import time import numpy import numpy.linalg as la import pyopencl as cl # You can choose a calculation routine below (calc_fractal), uncomment # one of the three lines to test the three variations # Speed notes are listed in the same place # set width and height of window, more pixels take longer to calculate w = 256 h = 256 def calc_fractal_opencl(q, maxiter): ctx = cl.Context(cl.get_platforms()[0].get_devices()) queue = cl.CommandQueue(ctx) output = np.empty(q.shape, dtype=np.uint16) mf = cl.mem_flags q_opencl = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=q) output_opencl = cl.Buffer(ctx, mf.WRITE_ONLY, output.nbytes) prg = cl.Program(ctx, """ #pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable __kernel void mandelbrot(__global float2 *q, __global ushort *output, ushort const maxiter) { int gid = get_global_id(0); float nreal, real = 0; float imag = 0; output[gid] = 0; for(int curiter = 0; curiter < maxiter; curiter++) { nreal = real*real - imag*imag + q[gid].x; imag = 2* real*imag + q[gid].y; real = nreal; if (real*real + imag*imag > 4.0f) output[gid] = curiter; } } """).build() prg.mandelbrot(queue, output.shape, (64,), q_opencl, output_opencl, np.uint16(maxiter)) cl.enqueue_read_buffer(queue, output_opencl, output).wait() return output def calc_fractal_serial(q, maxiter): # calculate z using numpy # this routine unrolls calc_fractal_numpy as an intermediate # step to the creation of calc_fractal_opencl # it runs slower than calc_fractal_numpy z = np.zeros(q.shape, np.complex64) output = np.resize(np.array(0,), q.shape) for i in range(len(q)): for iter in range(maxiter): z[i] = z[i]*z[i] + q[i] if abs(z[i]) > 2.0: q[i] = 0+0j z[i] = 0+0j output[i] = iter return output def calc_fractal_numpy(q, maxiter): # calculate z using numpy, this is the original # routine from vegaseat's URL output = np.resize(np.array(0,), q.shape) z = np.zeros(q.shape, np.complex64) for iter in range(maxiter): z = z*z + q done = np.greater(abs(z), 2.0) q = np.where(done,0+0j, q) z = np.where(done,0+0j, z) output = np.where(done, iter, output) return output # choose your calculation routine here by uncommenting one of the options calc_fractal = calc_fractal_opencl # calc_fractal = calc_fractal_serial # calc_fractal = calc_fractal_numpy if __name__ == '__main__': import Tkinter as tk import Image # PIL import ImageTk # PIL class Mandelbrot(object): def __init__(self): # create window self.root = tk.Tk() self.root.title("Mandelbrot Set") self.create_image() self.create_label() # start event loop self.root.mainloop() def draw(self, x1, x2, y1, y2, maxiter=30): # draw the Mandelbrot set, from numpy example xx = np.arange(x1, x2, (x2-x1)/w) yy = np.arange(y2, y1, (y1-y2)/h) * 1j q = np.ravel(xx+yy[:, np.newaxis]).astype(np.complex64) start_main = time.time() output = calc_fractal(q, maxiter) end_main = time.time() secs = end_main - start_main print("Main took", secs) self.mandel = (output.reshape((h,w)) / float(output.max()) * 255.).astype(np.uint8) def create_image(self): """" create the image from the draw() string """ # you can experiment with these x and y ranges self.draw(-2.13, 0.77, -1.3, 1.3) self.im = Image.fromarray(self.mandel) self.im.putpalette(reduce( lambda a,b: a+b, ((i,0,0) for i in range(255)) )) def create_label(self): # put the image on a label widget self.image = ImageTk.PhotoImage(self.im) self.label = tk.Label(self.root, image=self.image) self.label.pack() # test the class test = Mandelbrot()