diff --git a/test/test_array.py b/test/test_array.py index 2a939cedeaaa0a687d5da7329126c61c6f604a36..c0015d8779120a4bba35e098c94632b495bf4e04 100644 --- a/test/test_array.py +++ b/test/test_array.py @@ -294,8 +294,8 @@ def test_elwise_kernel(ctx_factory): from pyopencl.clrandom import rand as clrand - a_gpu = clrand(context, queue, (50,), np.float32) - b_gpu = clrand(context, queue, (50,), np.float32) + a_gpu = clrand(queue, (50,), np.float32) + b_gpu = clrand(queue, (50,), np.float32) from pyopencl.elementwise import ElementwiseKernel lin_comb = ElementwiseKernel(context, @@ -317,7 +317,7 @@ def test_elwise_kernel_with_options(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) - in_gpu = clrand(context, queue, (50,), np.float32) + in_gpu = clrand(queue, (50,), np.float32) options = ['-DADD_ONE'] add_one = ElementwiseKernel( @@ -383,7 +383,7 @@ def test_sum(ctx_factory): from pyopencl.clrandom import rand as clrand - a_gpu = clrand(context, queue, (200000,), np.float32) + a_gpu = clrand(queue, (200000,), np.float32) a = a_gpu.get() sum_a = np.sum(a) @@ -406,7 +406,7 @@ def test_minmax(ctx_factory): for what in ["min", "max"]: for dtype in dtypes: - a_gpu = clrand(context, queue, (200000,), dtype) + a_gpu = clrand(queue, (200000,), dtype) a = a_gpu.get() op_a = getattr(np, what)(a) @@ -432,7 +432,7 @@ def test_subset_minmax(ctx_factory): dtypes = [np.float32, np.int32] for dtype in dtypes: - a_gpu = clrand(context, queue, (l_a,), dtype) + a_gpu = clrand(queue, (l_a,), dtype) a = a_gpu.get() meaningful_indices_gpu = cl_array.zeros( @@ -461,9 +461,9 @@ def test_dot(ctx_factory): queue = cl.CommandQueue(context) from pyopencl.clrandom import rand as clrand - a_gpu = clrand(context, queue, (200000,), np.float32) + a_gpu = clrand(queue, (200000,), np.float32) a = a_gpu.get() - b_gpu = clrand(context, queue, (200000,), np.float32) + b_gpu = clrand(queue, (200000,), np.float32) b = b_gpu.get() dot_ab = np.dot(a, b) @@ -479,7 +479,7 @@ if False: from pyopencl.clrandom import rand as clrand l = 20000 - a_gpu = clrand(context, queue, (l,)) + a_gpu = clrand(queue, (l,)) a = a_gpu.get() from random import randrange @@ -501,8 +501,8 @@ def test_if_positive(ctx_factory): from pyopencl.clrandom import rand as clrand l = 20000 - a_gpu = clrand(context, queue, (l,), np.float32) - b_gpu = clrand(context, queue, (l,), np.float32) + a_gpu = clrand(queue, (l,), np.float32) + b_gpu = clrand(queue, (l,), np.float32) a = a_gpu.get() b = b_gpu.get() @@ -548,7 +548,7 @@ def test_astype(ctx_factory): if not has_double_support(context.devices[0]): return - a_gpu = clrand(context, queue, (2000,), dtype=np.float32) + a_gpu = clrand(queue, (2000,), dtype=np.float32) a = a_gpu.get().astype(np.float64) a2 = a_gpu.astype(np.float64).get() @@ -556,7 +556,7 @@ def test_astype(ctx_factory): assert a2.dtype == np.float64 assert la.norm(a - a2) == 0, (a, a2) - a_gpu = clrand(context, queue, (2000,), dtype=np.float64) + a_gpu = clrand(queue, (2000,), dtype=np.float64) a = a_gpu.get().astype(np.float32) a2 = a_gpu.astype(np.float32).get()