from __future__ import division def test_expand(): from pymbolic import var, expand x = var("x") u = (x+1)**5 expand(u) def test_substitute(): from pymbolic import parse, substitute, evaluate u = parse("5+x.min**2") xmin = parse("x.min") assert evaluate(substitute(u, {xmin:25})) == 630 def test_fft_with_floats(): import py.test numpy = py.test.importorskip("numpy") import numpy.linalg as la from pymbolic.algorithm import fft, ifft for n in [2**i for i in range(4, 10)]+[17, 12, 948]: a = numpy.random.rand(n) + 1j*numpy.random.rand(n) f_a = fft(a) a2 = ifft(f_a) assert la.norm(a-a2) < 1e-10 f_a_numpy = numpy.fft.fft(a) assert la.norm(f_a-f_a_numpy) < 1e-10 from pymbolic.mapper import IdentityMapper class NearZeroKiller(IdentityMapper): def map_constant(self, expr): if isinstance(expr, complex): r = expr.real i = expr.imag if abs(r) < 1e-15: r = 0 if abs(i) < 1e-15: i = 0 return complex(r, i) else: return expr def test_fft(): import py.test numpy = py.test.importorskip("numpy") from pymbolic import var from pymbolic.algorithm import fft vars = numpy.array([var(chr(97+i)) for i in range(16)], dtype=object) print vars def wrap_intermediate(x): if len(x) > 1: from hedge.optemplate import make_common_subexpression return make_common_subexpression(x) else: return x nzk = NearZeroKiller() print nzk(fft(vars)) traced_fft = nzk(fft(vars, wrap_intermediate=wrap_intermediate)) from pymbolic.mapper.stringifier import PREC_NONE from pymbolic.mapper.c_code import CCodeMapper ccm = CCodeMapper() code = [ccm(tfi, PREC_NONE) for tfi in traced_fft] for i, cse in enumerate(ccm.cses): print "_cse%d = %s" % (i, cse) for i, line in enumerate(code): print "result[%d] = %s" % (i, line) def test_sparse_multiply(): import py.test numpy = py.test.importorskip("numpy") py.test.importorskip("scipy") import scipy.sparse as ss import scipy.sparse.linalg as sla la = numpy.linalg mat = numpy.random.randn(10, 10) s_mat = ss.csr_matrix(mat) vec = numpy.random.randn(10) mat_vec = s_mat*vec from pymbolic.algorithm import csr_matrix_multiply mat_vec_2 = csr_matrix_multiply(s_mat, vec) assert la.norm(mat_vec-mat_vec_2) < 1e-14