from __future__ import division __copyright__ = "Copyright (C) 2009-2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pymbolic.primitives as prim import pytest def test_expand(): from pymbolic import var, expand x = var("x") u = (x+1)**5 expand(u) def test_substitute(): from pymbolic import parse, substitute, evaluate u = parse("5+x.min**2") xmin = parse("x.min") assert evaluate(substitute(u, {xmin:25})) == 630 def test_fft_with_floats(): numpy = pytest.importorskip("numpy") import numpy.linalg as la from pymbolic.algorithm import fft, ifft for n in [2**i for i in range(4, 10)]+[17, 12, 948]: a = numpy.random.rand(n) + 1j*numpy.random.rand(n) f_a = fft(a) a2 = ifft(f_a) assert la.norm(a-a2) < 1e-10 f_a_numpy = numpy.fft.fft(a) assert la.norm(f_a-f_a_numpy) < 1e-10 from pymbolic.mapper import IdentityMapper class NearZeroKiller(IdentityMapper): def map_constant(self, expr): if isinstance(expr, complex): r = expr.real i = expr.imag if abs(r) < 1e-15: r = 0 if abs(i) < 1e-15: i = 0 return complex(r, i) else: return expr def test_fft(): numpy = pytest.importorskip("numpy") from pymbolic import var from pymbolic.algorithm import fft, sym_fft vars = numpy.array([var(chr(97+i)) for i in range(16)], dtype=object) print vars print fft(vars) traced_fft = sym_fft(vars) from pymbolic.mapper.stringifier import PREC_NONE from pymbolic.mapper.c_code import CCodeMapper ccm = CCodeMapper() code = [ccm(tfi, PREC_NONE) for tfi in traced_fft] for cse_name, cse_str in enumerate(ccm.cse_name_list): print "%s = %s" % (cse_name, cse_str) for i, line in enumerate(code): print "result[%d] = %s" % (i, line) def test_sparse_multiply(): numpy = pytest.importorskip("numpy") pytest.importorskip("scipy") import scipy.sparse as ss la = numpy.linalg mat = numpy.random.randn(10, 10) s_mat = ss.csr_matrix(mat) vec = numpy.random.randn(10) mat_vec = s_mat*vec from pymbolic.algorithm import csr_matrix_multiply mat_vec_2 = csr_matrix_multiply(s_mat, vec) assert la.norm(mat_vec-mat_vec_2) < 1e-14 def test_no_comparison(): from pymbolic import parse x = parse("17+3*x") y = parse("12-5*y") def expect_typeerror(f): try: f() except TypeError: pass else: assert False expect_typeerror(lambda: x < y) expect_typeerror(lambda: x <= y) expect_typeerror(lambda: x > y) expect_typeerror(lambda: x >= y) def test_parser(): from pymbolic import parse parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) " "-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) " "+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)") print repr(parse("d4knl0")) print repr(parse("0.")) print repr(parse("0.e1")) print repr(parse("0.e1")) print repr(parse("a >= 1")) print repr(parse("a <= 1")) print repr(parse(":")) print repr(parse("1:")) print repr(parse(":2")) print repr(parse("1:2")) print repr(parse("::")) print repr(parse("1::")) print repr(parse(":1:")) print repr(parse("::1")) print repr(parse("3::1")) print repr(parse(":5:1")) print repr(parse("3:5:1")) print parse("3::1") assert parse("e1") == prim.Variable("e1") assert parse("d1") == prim.Variable("d1") from pymbolic import variables f, x, y, z = variables("f x y z") assert parse("f((x,y),z)") == f((x,y),z) assert parse("f((x,),z)") == f((x,),z) assert parse("f(x,(y,z),z)") == f(x,(y,z),z) def test_structure_preservation(): x = prim.Sum((5, 7)) from pymbolic.mapper import IdentityMapper x2 = IdentityMapper()(x) assert x == x2 @pytest.mark.parametrize("dims", [2,3,4,5]) def test_geometric_algebra(dims): np = pytest.importorskip("numpy") from pymbolic.geometric_algebra import MultiVector as MV vec1 = MV(np.random.randn(dims)) vec2 = MV(np.random.randn(dims)) vec3 = MV(np.random.randn(dims)) vec4 = MV(np.random.randn(dims)) vec5 = MV(np.random.randn(dims)) # Fundamental identity assert ((vec1 ^ vec2) + (vec1|vec2)).close_to(vec1*vec2) # Antisymmetry assert (vec1^vec2^vec3).close_to(-vec2^vec1^vec3) vecs = [vec1, vec2, vec3, vec4, vec5] if len(vecs) > dims: from operator import xor as outer assert reduce(outer, vecs).close_to(0) for obj1, obj2, obj3 in [ (vec1, vec2, vec3), (vec1*vec2, vec3, vec4), (vec1, vec2*vec3, vec4), (vec1, vec2, vec3*vec4), (vec1, vec2, vec3*vec4), (vec1, vec2, vec3*vec4*vec5), (vec1, vec2*vec1, vec3*vec4*vec5), ]: # scalar product assert ( (obj3*obj2).project(0) ) .close_to( obj2.scalar_product(obj3) ) # FIXME: still broken #assert obj2.norm_squared() >= 0 #assert obj3.norm_squared() >= 0 # Cauchy's inequality # FIXME: still broken #assert obj2.scalar_product(obj3) <= abs(obj2)*abs(obj3) + 1e-13 # reverse/dual properties (Sec 2.9.5 DFW) assert obj3.rev().rev() == obj3 assert (obj2^obj3).rev() .close_to( (obj3.rev() ^ obj2.rev()) ) # involution properties (Sec 2.9.5 DFW) assert obj3.invol().invol() == obj3 assert (obj2^obj3).invol() .close_to( (obj2.invol() ^ obj3.invol()) ) # Associativity assert ((obj1*obj2)*obj3).close_to( obj1*(obj2*obj3)) assert ((obj1^obj2)^obj3).close_to( obj1^(obj2^obj3)) assert ((obj1*obj2)*obj3).close_to( obj1*(obj2*obj3)) def playground(): import numpy as np from pymbolic.geometric_algebra import MultiVector as MV dims = 3 vec1 = MV(np.random.randn(dims)) vec2 = MV(np.random.randn(dims)) vec3 = MV(np.random.randn(dims)) vec4 = MV(np.random.randn(dims)) vec5 = MV(np.random.randn(dims)) print (vec3*vec4).norm_squared() if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__])