from __future__ import division __copyright__ = "Copyright (C) 2009-2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pymbolic import pymbolic.primitives as prim import pytest from pymbolic.mapper import IdentityMapper try: reduce except NameError: from functools import reduce pymbolic.disable_subscript_by_getitem() def test_integer_power(): from pymbolic.algorithm import integer_power for base, expn in [ (17, 5), (17, 2**10), (13, 20), (13, 1343), ]: assert base**expn == integer_power(base, expn) def test_expand(): from pymbolic import var, expand x = var("x") u = (x+1)**5 expand(u) def test_substitute(): from pymbolic import parse, substitute, evaluate u = parse("5+x.min**2") xmin = parse("x.min") assert evaluate(substitute(u, {xmin: 25})) == 630 def test_no_comparison(): from pymbolic import parse x = parse("17+3*x") y = parse("12-5*y") def expect_typeerror(f): try: f() except TypeError: pass else: assert False expect_typeerror(lambda: x < y) expect_typeerror(lambda: x <= y) expect_typeerror(lambda: x > y) expect_typeerror(lambda: x >= y) def test_structure_preservation(): x = prim.Sum((5, 7)) from pymbolic.mapper import IdentityMapper x2 = IdentityMapper()(x) assert x == x2 def test_sympy_interaction(): pytest.importorskip("sympy") import sympy as sp x, y = sp.symbols("x y") f = sp.symbols("f") s1_expr = 1/f(x/sp.sqrt(x**2+y**2)).diff(x, 5) from pymbolic.sympy_interface import ( SympyToPymbolicMapper, PymbolicToSympyMapper) s2p = SympyToPymbolicMapper() p2s = PymbolicToSympyMapper() p1_expr = s2p(s1_expr) s2_expr = p2s(p1_expr) assert sp.ratsimp(s1_expr - s2_expr) == 0 p2_expr = s2p(s2_expr) s3_expr = p2s(p2_expr) assert sp.ratsimp(s1_expr - s3_expr) == 0 # {{{ fft def test_fft_with_floats(): numpy = pytest.importorskip("numpy") import numpy.linalg as la from pymbolic.algorithm import fft, ifft for n in [2**i for i in range(4, 10)]+[17, 12, 948]: a = numpy.random.rand(n) + 1j*numpy.random.rand(n) f_a = fft(a) a2 = ifft(f_a) assert la.norm(a-a2) < 1e-10 f_a_numpy = numpy.fft.fft(a) assert la.norm(f_a-f_a_numpy) < 1e-10 class NearZeroKiller(IdentityMapper): def map_constant(self, expr): if isinstance(expr, complex): r = expr.real i = expr.imag if abs(r) < 1e-15: r = 0 if abs(i) < 1e-15: i = 0 return complex(r, i) else: return expr def test_fft(): numpy = pytest.importorskip("numpy") from pymbolic import var from pymbolic.algorithm import fft, sym_fft vars = numpy.array([var(chr(97+i)) for i in range(16)], dtype=object) print(vars) print(fft(vars)) traced_fft = sym_fft(vars) from pymbolic.mapper.stringifier import PREC_NONE from pymbolic.mapper.c_code import CCodeMapper ccm = CCodeMapper() code = [ccm(tfi, PREC_NONE) for tfi in traced_fft] for cse_name, cse_str in enumerate(ccm.cse_name_list): print("%s = %s" % (cse_name, cse_str)) for i, line in enumerate(code): print("result[%d] = %s" % (i, line)) # }}} def test_sparse_multiply(): numpy = pytest.importorskip("numpy") pytest.importorskip("scipy") import scipy.sparse as ss la = numpy.linalg mat = numpy.random.randn(10, 10) s_mat = ss.csr_matrix(mat) vec = numpy.random.randn(10) mat_vec = s_mat*vec from pymbolic.algorithm import csr_matrix_multiply mat_vec_2 = csr_matrix_multiply(s_mat, vec) assert la.norm(mat_vec-mat_vec_2) < 1e-14 # {{{ parser def test_parser(): from pymbolic import parse parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) " "-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) " "+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)") print(repr(parse("d4knl0"))) print(repr(parse("0."))) print(repr(parse("0.e1"))) assert parse("0.e1") == 0 assert parse("1e-12") == 1e-12 print(repr(parse("a >= 1"))) print(repr(parse("a <= 1"))) print(repr(parse(":"))) print(repr(parse("1:"))) print(repr(parse(":2"))) print(repr(parse("1:2"))) print(repr(parse("::"))) print(repr(parse("1::"))) print(repr(parse(":1:"))) print(repr(parse("::1"))) print(repr(parse("3::1"))) print(repr(parse(":5:1"))) print(repr(parse("3:5:1"))) print(repr(parse("g[i,k]+2.0*h[i,k]"))) print(repr(parse("g[i,k]+(+2.0)*h[i,k]"))) print(repr(parse("a - b - c"))) print(repr(parse("-a - -b - -c"))) print(repr(parse("- - - a - - - - b - - - - - c"))) print(repr(parse("~(a ^ b)"))) print(repr(parse("(a | b) | ~(~a & ~b)"))) print(repr(parse("3 << 1"))) print(repr(parse("1 >> 3"))) print(parse("3::1")) assert parse("e1") == prim.Variable("e1") assert parse("d1") == prim.Variable("d1") from pymbolic import variables f, x, y, z = variables("f x y z") assert parse("f((x,y),z)") == f((x, y), z) assert parse("f((x,),z)") == f((x,), z) assert parse("f(x,(y,z),z)") == f(x, (y, z), z) assert parse("f(x,(y,z),z, name=15)") == f(x, (y, z), z, name=15) assert parse("f(x,(y,z),z, name=15, name2=17)") == f( x, (y, z), z, name=15, name2=17) # }}} def test_mappers(): from pymbolic import variables f, x, y, z = variables("f x y z") for expr in [ f(x, (y, z), name=z**2) ]: from pymbolic.mapper import WalkMapper from pymbolic.mapper.dependency import DependencyMapper str(expr) IdentityMapper()(expr) WalkMapper()(expr) DependencyMapper()(expr) def test_func_dep_consistency(): from pymbolic import var from pymbolic.mapper.dependency import DependencyMapper f = var('f') x = var('x') dep_map = DependencyMapper(include_calls="descend_args") assert dep_map(f(x)) == set([x]) assert dep_map(f(x=x)) == set([x]) def test_conditions(): from pymbolic import var x = var('x') y = var('y') assert str(x.eq(y).and_(x.le(5))) == "x == y and x <= 5" def test_graphviz(): from pymbolic import parse expr = parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) " "-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) " "+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)") from pymbolic.mapper.graphviz import GraphvizMapper gvm = GraphvizMapper() gvm(expr) print(gvm.get_dot_code()) # {{{ geometric algebra @pytest.mark.parametrize("dims", [2, 3, 4, 5]) # START_GA_TEST def test_geometric_algebra(dims): pytest.importorskip("numpy") import numpy as np from pymbolic.geometric_algebra import MultiVector as MV # noqa vec1 = MV(np.random.randn(dims)) vec2 = MV(np.random.randn(dims)) vec3 = MV(np.random.randn(dims)) vec4 = MV(np.random.randn(dims)) vec5 = MV(np.random.randn(dims)) # Fundamental identity assert ((vec1 ^ vec2) + (vec1 | vec2)).close_to(vec1*vec2) # Antisymmetry assert (vec1 ^ vec2 ^ vec3).close_to(- vec2 ^ vec1 ^ vec3) vecs = [vec1, vec2, vec3, vec4, vec5] if len(vecs) > dims: from operator import xor as outer assert reduce(outer, vecs).close_to(0) assert (vec1.inv()*vec1).close_to(1) assert (vec1*vec1.inv()).close_to(1) assert ((1/vec1)*vec1).close_to(1) assert (vec1/vec1).close_to(1) for a, b, c in [ (vec1, vec2, vec3), (vec1*vec2, vec3, vec4), (vec1, vec2*vec3, vec4), (vec1, vec2, vec3*vec4), (vec1, vec2, vec3*vec4*vec5), (vec1, vec2*vec1, vec3*vec4*vec5), ]: # Associativity assert ((a*b)*c).close_to(a*(b*c)) assert ((a ^ b) ^ c).close_to(a ^ (b ^ c)) # The inner product is not associative. # scalar product assert ((c*b).project(0)) .close_to(b.scalar_product(c)) assert ((c.rev()*b).project(0)) .close_to(b.rev().scalar_product(c)) assert ((b.rev()*b).project(0)) .close_to(b.norm_squared()) assert b.norm_squared() >= 0 assert c.norm_squared() >= 0 # Cauchy's inequality assert b.scalar_product(c) <= abs(b)*abs(c) + 1e-13 # contractions # (3.18) in [DFM] assert abs(b.scalar_product(a ^ c) - (b >> a).scalar_product(c)) < 1e-13 # duality, (3.20) in [DFM] assert ((a ^ b) << c) .close_to(a << (b << c)) # two definitions of the dual agree: (1.2.26) in [HS] # and (sec 3.5.3) in [DFW] assert (c << c.I.rev()).close_to(c | c.I.rev()) # inverse for div in list(b.gen_blades()) + [vec1, vec1.I]: assert (div.inv()*div).close_to(1) assert (div*div.inv()).close_to(1) assert ((1/div)*div).close_to(1) assert (div/div).close_to(1) assert ((c/div)*div).close_to(c) assert ((c*div)/div).close_to(c) # reverse properties (Sec 2.9.5 [DFM]) assert c.rev().rev() == c assert (b ^ c).rev() .close_to((c.rev() ^ b.rev())) # dual properties # (1.2.26) in [HS] assert c.dual() .close_to(c | c.I.rev()) assert c.dual() .close_to(c*c.I.rev()) # involution properties (Sec 2.9.5 DFW) assert c.invol().invol() == c assert (b ^ c).invol() .close_to((b.invol() ^ c.invol())) # commutator properties # Jacobi identity (1.1.56c) in [HS] or (8.2) in [DFW] assert (a.x(b.x(c)) + b.x(c.x(a)) + c.x(a.x(b))).close_to(0) # (1.57) in [HS] assert a.x(b*c) .close_to(a.x(b)*c + b*a.x(c)) # END_GA_TEST # }}} def test_ast_interop(): src = """ def f(): xx = 3*y + z * (12 if x < 13 else 13) yy = f(x, y=y) """ import ast mod = ast.parse(src.replace("\n ", "\n")) print(ast.dump(mod)) from pymbolic.interop.ast import ASTToPymbolic ast2p = ASTToPymbolic() for f in mod.body: if not isinstance(f, ast.FunctionDef): continue for stmt in f.body: if not isinstance(stmt, ast.Assign): continue lhs, = stmt.targets lhs = ast2p(lhs) rhs = ast2p(stmt.value) print(lhs, rhs) def test_compile(): from pymbolic import parse, compile code = compile(parse("x ** y"), ["x", "y"]) assert code(2, 5) == 32 # Test pickling of compiled code. import pickle code = pickle.loads(pickle.dumps(code)) assert code(3, 3) == 27 def test_unifier(): from pymbolic import var from pymbolic.mapper.unifier import UnidirectionalUnifier a, b, c, d, e, f = [var(s) for s in "abcdef"] def match_found(records, eqns): for record in records: if eqns <= set(record.equations): return True return False recs = UnidirectionalUnifier("abc")(a+b*c, d+e*f) assert len(recs) == 2 assert match_found(recs, set([(a, d), (b, e), (c, f)])) assert match_found(recs, set([(a, d), (b, f), (c, e)])) recs = UnidirectionalUnifier("abc")(a+b, d+e+f) assert len(recs) == 6 assert match_found(recs, set([(a, d), (b, e+f)])) assert match_found(recs, set([(a, e), (b, d+f)])) assert match_found(recs, set([(a, f), (b, d+e)])) assert match_found(recs, set([(b, d), (a, e+f)])) assert match_found(recs, set([(b, e), (a, d+f)])) assert match_found(recs, set([(b, f), (a, d+e)])) if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__]) # vim: fdm=marker