Newer
Older
from __future__ import division
__copyright__ = "Copyright (C) 2009-2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from pymbolic.mapper import IdentityMapper
try:
reduce
except NameError:
from functools import reduce
def test_expand():
from pymbolic import var, expand
x = var("x")
u = (x+1)**5
expand(u)
def test_substitute():
from pymbolic import parse, substitute, evaluate
u = parse("5+x.min**2")
xmin = parse("x.min")
assert evaluate(substitute(u, {xmin: 25})) == 630
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def test_no_comparison():
from pymbolic import parse
x = parse("17+3*x")
y = parse("12-5*y")
def expect_typeerror(f):
try:
f()
except TypeError:
pass
else:
assert False
expect_typeerror(lambda: x < y)
expect_typeerror(lambda: x <= y)
expect_typeerror(lambda: x > y)
expect_typeerror(lambda: x >= y)
def test_structure_preservation():
x = prim.Sum((5, 7))
from pymbolic.mapper import IdentityMapper
x2 = IdentityMapper()(x)
assert x == x2
def test_sympy_interaction():
pytest.importorskip("sympy")
import sympy as sp
x, y = sp.symbols("x y")
f = sp.symbols("f")
s1_expr = 1/f(x/sp.sqrt(x**2+y**2)).diff(x, 5)
from pymbolic.sympy_interface import (
SympyToPymbolicMapper,
PymbolicToSympyMapper)
s2p = SympyToPymbolicMapper()
p2s = PymbolicToSympyMapper()
p1_expr = s2p(s1_expr)
s2_expr = p2s(p1_expr)
assert s1_expr == s2_expr
p2_expr = s2p(s2_expr)
assert p1_expr == p2_expr
# {{{ fft
def test_fft_with_floats():
numpy = pytest.importorskip("numpy")
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy.linalg as la
from pymbolic.algorithm import fft, ifft
for n in [2**i for i in range(4, 10)]+[17, 12, 948]:
a = numpy.random.rand(n) + 1j*numpy.random.rand(n)
f_a = fft(a)
a2 = ifft(f_a)
assert la.norm(a-a2) < 1e-10
f_a_numpy = numpy.fft.fft(a)
assert la.norm(f_a-f_a_numpy) < 1e-10
class NearZeroKiller(IdentityMapper):
def map_constant(self, expr):
if isinstance(expr, complex):
r = expr.real
i = expr.imag
if abs(r) < 1e-15:
r = 0
if abs(i) < 1e-15:
i = 0
return complex(r, i)
else:
return expr
def test_fft():
numpy = pytest.importorskip("numpy")
from pymbolic import var
from pymbolic.algorithm import fft, sym_fft
vars = numpy.array([var(chr(97+i)) for i in range(16)], dtype=object)
traced_fft = sym_fft(vars)
from pymbolic.mapper.stringifier import PREC_NONE
from pymbolic.mapper.c_code import CCodeMapper
ccm = CCodeMapper()
code = [ccm(tfi, PREC_NONE) for tfi in traced_fft]
for cse_name, cse_str in enumerate(ccm.cse_name_list):
for i, line in enumerate(code):
def test_sparse_multiply():
numpy = pytest.importorskip("numpy")
pytest.importorskip("scipy")
import scipy.sparse as ss
la = numpy.linalg
mat = numpy.random.randn(10, 10)
s_mat = ss.csr_matrix(mat)
vec = numpy.random.randn(10)
mat_vec = s_mat*vec
from pymbolic.algorithm import csr_matrix_multiply
mat_vec_2 = csr_matrix_multiply(s_mat, vec)
assert la.norm(mat_vec-mat_vec_2) < 1e-14
def test_parser():
from pymbolic import parse
parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) "
"-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) "
"+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)")
print(repr(parse("d4knl0")))
print(repr(parse("0.")))
print(repr(parse("0.e1")))
print(repr(parse("0.e1")))
print(repr(parse("a >= 1")))
print(repr(parse("a <= 1")))
print(repr(parse(":")))
print(repr(parse("1:")))
print(repr(parse(":2")))
print(repr(parse("1:2")))
print(repr(parse("::")))
print(repr(parse("1::")))
print(repr(parse(":1:")))
print(repr(parse("::1")))
print(repr(parse("3::1")))
print(repr(parse(":5:1")))
print(repr(parse("3:5:1")))
print(parse("3::1"))
assert parse("e1") == prim.Variable("e1")
assert parse("d1") == prim.Variable("d1")
from pymbolic import variables
f, x, y, z = variables("f x y z")
assert parse("f((x,y),z)") == f((x, y), z)
assert parse("f((x,),z)") == f((x,), z)
assert parse("f(x,(y,z),z)") == f(x, (y, z), z)
@pytest.mark.parametrize("dims", [2, 3, 4, 5])
def test_geometric_algebra(dims):
pytest.importorskip("numpy")
import numpy as np
from pymbolic.geometric_algebra import MultiVector as MV
vec1 = MV(np.random.randn(dims))
vec2 = MV(np.random.randn(dims))
vec3 = MV(np.random.randn(dims))
vec4 = MV(np.random.randn(dims))
vec5 = MV(np.random.randn(dims))
# Fundamental identity
assert ((vec1 ^ vec2) + (vec1 | vec2)).close_to(vec1*vec2)
assert (vec1 ^ vec2 ^ vec3).close_to(- vec2 ^ vec1 ^ vec3)
vecs = [vec1, vec2, vec3, vec4, vec5]
if len(vecs) > dims:
from operator import xor as outer
assert reduce(outer, vecs).close_to(0)
assert (vec1.inv()*vec1).close_to(1)
assert (vec1*vec1.inv()).close_to(1)
assert ((1/vec1)*vec1).close_to(1)
assert (vec1/vec1).close_to(1)
(vec1, vec2, vec3),
(vec1*vec2, vec3, vec4),
(vec1, vec2*vec3, vec4),
(vec1, vec2, vec3*vec4),
(vec1, vec2, vec3*vec4*vec5),
(vec1, vec2*vec1, vec3*vec4*vec5),
]:
assert ((a*b)*c).close_to(a*(b*c))
assert ((a ^ b) ^ c).close_to(a ^ (b ^ c))
assert ((c*b).project(0)) .close_to(b.scalar_product(c))
assert ((c.rev()*b).project(0)) .close_to(b.rev().scalar_product(c))
assert ((b.rev()*b).project(0)) .close_to(b.norm_squared())
assert b.norm_squared() >= 0
assert c.norm_squared() >= 0
assert b.scalar_product(c) <= abs(b)*abs(c) + 1e-13
# contractions
# (3.18) in [DFM]
assert abs(b.scalar_product(a ^ c) - (b >> a).scalar_product(c)) < 1e-13
# duality, (3.20) in [DFM]
assert ((a ^ b) << c) .close_to(a << (b << c))
# two definitions of the dual agree: (1.2.26) in [HS]
# and (sec 3.5.3) in [DFW]
assert (c << c.I.rev()).close_to(c | c.I.rev())
# inverse
for div in list(b.gen_blades()) + [vec1, vec1.I]:
assert (div.inv()*div).close_to(1)
assert (div*div.inv()).close_to(1)
assert ((1/div)*div).close_to(1)
assert (div/div).close_to(1)
assert ((c/div)*div).close_to(c)
assert ((c*div)/div).close_to(c)
# reverse properties (Sec 2.9.5 [DFM])
assert c.rev().rev() == c
assert (b ^ c).rev() .close_to((c.rev() ^ b.rev()))
assert c.dual() .close_to(c | c.I.rev())
assert c.dual() .close_to(c*c.I.rev())
# involution properties (Sec 2.9.5 DFW)
assert c.invol().invol() == c
assert (b ^ c).invol() .close_to((b.invol() ^ c.invol()))
# commutator properties
# Jacobi identity (1.1.56c) in [HS] or (8.2) in [DFW]
assert (a.x(b.x(c)) + b.x(c.x(a)) + c.x(a.x(b))).close_to(0)
assert a.x(b*c) .close_to(a.x(b)*c + b*a.x(c))
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])