#!/usr/bin/env python # -*- coding: latin-1 -*- def get_config_schema(): from aksetup_helper import ConfigSchema, Option, \ IncludeDir, LibraryDir, Libraries, BoostLibraries, \ Switch, StringListOption, make_boost_base_options return ConfigSchema(make_boost_base_options() + [ BoostLibraries("python"), BoostLibraries("thread"), Switch("CUDA_TRACE", False, "Enable CUDA API tracing"), Option("CUDA_ROOT", help="Path to the CUDA toolkit"), IncludeDir("CUDA", None), Switch("CUDA_ENABLE_GL", False, "Enable CUDA GL interoperability"), LibraryDir("CUDADRV", []), Libraries("CUDADRV", ["cuda"]), StringListOption("CXXFLAGS", [], help="Any extra C++ compiler options to include"), StringListOption("LDFLAGS", [], help="Any extra linker options to include"), ]) def search_on_path(filename): """Find file on system path.""" # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52224 from os.path import exists, join, abspath from os import pathsep, environ search_path = environ["PATH"] #print "*", search_path file_found = 0 paths = search_path.split(pathsep) for path in paths: #print path if exists(join(path, filename)): file_found = 1 break if file_found: return abspath(join(path, filename)) else: return None def main(): import glob from aksetup_helper import hack_distutils, get_config, setup, \ NumpyExtension hack_distutils() conf = get_config(get_config_schema()) LIBRARY_DIRS = conf["BOOST_LIB_DIR"] LIBRARIES = conf["BOOST_PYTHON_LIBNAME"] + conf["BOOST_THREAD_LIBNAME"] from os.path import dirname, join, normpath if conf["CUDA_ROOT"] is None: nvcc_path = search_on_path("nvcc") if nvcc_path is None: print "*** CUDA_ROOT not set, and nvcc not in path. Giving up." import sys sys.exit(1) conf["CUDA_ROOT"] = normpath(join(dirname(nvcc_path), "..")) if conf["CUDA_INC_DIR"] is None: conf["CUDA_INC_DIR"] = [join(conf["CUDA_ROOT"], "include")] if not conf["CUDADRV_LIB_DIR"]: conf["CUDADRV_LIB_DIR"] = [join(conf["CUDA_ROOT"], "lib")] EXTRA_DEFINES = { } EXTRA_INCLUDE_DIRS = [] EXTRA_LIBRARY_DIRS = [] EXTRA_LIBRARIES = [] if conf["CUDA_TRACE"]: EXTRA_DEFINES["CUDAPP_TRACE_CUDA"] = 1 INCLUDE_DIRS = ['src/cpp'] + conf["BOOST_INC_DIR"] + conf["CUDA_INC_DIR"] conf["USE_CUDA"] = True import sys if 'darwin' in sys.platform: # prevent from building ppc since cuda on OS X is not compiled for ppc if "-arch" not in conf["CXXFLAGS"]: conf["CXXFLAGS"].extend(['-arch', 'i386']) if "-arch" not in conf["LDFLAGS"]: conf["LDFLAGS"].extend(['-arch', 'i386']) ext_kwargs = dict() extra_sources = [] if conf["CUDA_ENABLE_GL"]: extra_sources.append("src/wrapper/wrap_cudagl.cpp") EXTRA_DEFINES["HAVE_GL"] = 1 setup(name="pycuda", # metadata version="0.93beta", description="Python wrapper for Nvidia CUDA", long_description=""" PyCUDA lets you access `Nvidia `_'s `CUDA `_ parallel computation API from Python. Several wrappers of the CUDA API already exist-so what's so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called `RAII `_ in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won't detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia's C-based runtime. * Completeness. PyCUDA puts the full power of CUDA's driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA's base layer is written in C++, so all the niceties above are virtually free. * Helpful `Documentation `_. """, author=u"Andreas Kloeckner", author_email="inform@tiker.net", license = "MIT", url="http://mathema.tician.de/software/pycuda", classifiers=[ 'Environment :: Console', 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Other Audience', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: C++', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Visualization', ], # build info packages=["pycuda", "pycuda.gl"], zip_safe=False, install_requires=[ "pytools>=8", ], ext_package="pycuda", ext_modules=[ NumpyExtension("_driver", [ "src/cpp/cuda.cpp", "src/cpp/bitlog.cpp", "src/wrapper/wrap_cudadrv.cpp", "src/wrapper/mempool.cpp", ]+extra_sources, include_dirs=INCLUDE_DIRS + EXTRA_INCLUDE_DIRS, library_dirs=LIBRARY_DIRS + conf["CUDADRV_LIB_DIR"], libraries=LIBRARIES + conf["CUDADRV_LIBNAME"], define_macros=list(EXTRA_DEFINES.iteritems()), extra_compile_args=conf["CXXFLAGS"], extra_link_args=conf["LDFLAGS"], ), ], data_files=[ ("include/cuda", glob.glob("src/cuda/*.hpp")) ], ) if __name__ == '__main__': main()