Newer
Older
#!/usr/bin/env python
# -*- coding: latin-1 -*-
def get_config_schema():
from aksetup_helper import ConfigSchema, Option, \
IncludeDir, LibraryDir, Libraries, \
Switch, StringListOption
return ConfigSchema([
IncludeDir("BOOST", []),
LibraryDir("BOOST", []),
Libraries("BOOST_PYTHON", ["boost_python-gcc42-mt"]),
Option("CUDA_ROOT", help="Path to the CUDA toolkit"),
IncludeDir("CUDA", None),
LibraryDir("CUDADRV", []),
Libraries("CUDADRV", ["cuda"]),
StringListOption("CXXFLAGS", [],
help="Any extra C++ compiler options to include"),
StringListOption("LDFLAGS", [],
help="Any extra linker options to include"),
])
def search_on_path(filename):
"""Find file on system path."""
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52224
from os.path import exists, join, abspath
from os import pathsep, environ
search_path = environ["PATH"]
file_found = 0
paths = search_path.split(pathsep)
for path in paths:
if exists(join(path, filename)):
file_found = 1
break
if file_found:
return abspath(join(path, filename))
else:
return None
def main():
import glob
from aksetup_helper import hack_distutils, get_config, setup, \
PyUblasExtension, NumpyExtension
hack_distutils()
conf = get_config(get_config_schema())
LIBRARY_DIRS = conf["BOOST_LIB_DIR"]
LIBRARIES = conf["BOOST_PYTHON_LIBNAME"]
from os.path import dirname, join, normpath
nvcc_path = search_on_path("nvcc")
if nvcc_path is None:
print "*** CUDA_ROOT not set, and nvcc not in path. Giving up."
import sys
sys.exit(1)
conf["CUDA_ROOT"] = normpath(join(dirname(nvcc_path), ".."))
conf["CUDA_INC_DIR"] = [join(conf["CUDA_ROOT"], "include")]
if not conf["CUDADRV_LIB_DIR"]:
conf["CUDADRV_LIB_DIR"] = [join(conf["CUDA_ROOT"], "lib")]
EXTRA_INCLUDE_DIRS = []
EXTRA_LIBRARY_DIRS = []
EXTRA_LIBRARIES = []
INCLUDE_DIRS = conf["BOOST_INC_DIR"] + conf["CUDA_INC_DIR"]
conf["USE_CUDA"] = True
setup(name="pycuda",
# metadata
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
long_description="""
PyCuda lets you access `Nvidia <http://nvidia.com>`_'s `CUDA
<http://nvidia.com/cuda/>`_ parallel computation API from Python.
Several wrappers of the CUDA API already exist-so what's so special
about PyCuda?
* Object cleanup tied to lifetime of objects. This idiom, often
called
`RAII <http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization>`_
in C++, makes it much easier to write correct, leak- and
crash-free code. PyCuda knows about dependencies, too, so (for
example) it won't detach from a context before all memory
allocated in it is also freed.
* Convenience. Abstractions like pycuda.driver.SourceModule and
pycuda.gpuarray.GPUArray make CUDA programming even more
convenient than with Nvidia's C-based runtime.
* Completeness. PyCuda puts the full power of CUDA's driver API at
your disposal, if you wish.
* Automatic Error Checking. All CUDA errors are automatically
translated into Python exceptions.
* Speed. PyCuda's base layer is written in C++, so all the niceties
above are virtually free.
* Helpful `Documentation <http://tiker.net/doc/pycuda>`_.
""",
author=u"Andreas Kloeckner",
author_email="inform@tiker.net",
license = "MIT",
url="http://mathema.tician.de/software/pycuda",
classifiers=[
'Environment :: Console',
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Other Audience',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Programming Language :: C++',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Physics',
'Topic :: Scientific/Engineering :: Visualization',
],
# build info
packages=["pycuda"],
zip_safe=False,
install_requires=[
"pytools>=3",
],
package_dir={"pycuda": "src/python"},
ext_package="pycuda",
ext_modules=[
NumpyExtension("_driver",
[
"src/wrapper/wrap_cudadrv.cpp",
],
include_dirs=INCLUDE_DIRS + EXTRA_INCLUDE_DIRS,
library_dirs=LIBRARY_DIRS + conf["CUDADRV_LIB_DIR"],
libraries=LIBRARIES + conf["CUDADRV_LIBNAME"],
define_macros=list(EXTRA_DEFINES.iteritems()),
extra_compile_args=conf["CXXFLAGS"],
extra_link_args=conf["LDFLAGS"],
),
)
if __name__ == '__main__':
main()