import numpy as np import numpy.linalg as la # noqa: F401 import pyopencl as cl # noqa: F401 import pyopencl.array # noqa import pyopencl.tools # noqa import pyopencl.clrandom # noqa import loopy as lp # noqa def oscillation(fluxes): sum1 = np.empty((fluxes.shape[0], 3)) sum2 = np.empty((fluxes.shape[0], 3)) sum1[:,0] = fluxes[:,0] - 4*fluxes[:,1] + 3*fluxes[:,2] sum1[:,1] = -fluxes[:,1] + fluxes[:,3] sum1[:,2] = -3*fluxes[:,2] + 4*fluxes[:,3] - fluxes[:,4] for i in range(3): sum2[:,i] = fluxes[:,i] - 2*fluxes[:,i+1] + fluxes[:,i+2] result = (1.0/4)*(sum1**2) + (13.0/12)*(sum2**2) return result def weno_weights(oscillation, frozen_metric): linear = np.array([0.1, 0.6, 0.3]) eps = 1e-6*frozen_metric raw_weights = np.empty((5,3)) for i in range(5): for j in range(3): raw_weights[i,j] = linear[j]/(oscillation[i,j] + eps)**2 weight_sum = raw_weights.sum(axis=1) weights = np.empty((5,3)) for i in range(5): for j in range(3): weights[i,j] = raw_weights[i,j]/weight_sum[i] return weights def flux_differences(f): w = np.array([-1, 3, -3, 1]) res = np.empty((5, 3)) for j in range(res.shape[1]): res[:,j] = f[:,j:j+4]@w return res def combination_weighting(w): return np.array( [20*w[:,0] - 1, -10*(w[:,0] + w[:,1]) + 5, np.ones(w.shape[0])] ).T def combine_fluxes(w, f): cw = combination_weighting(w) return np.sum(np.multiply(cw, f), axis=1) def dissipation_part(R, char_fluxes, w, sign): flux_diff = flux_differences(char_fluxes)[:,::sign] flux_comb = combine_fluxes(w, flux_diff) return -sign*R@flux_comb/60 def weno_flux(consistent, dissipation_pos, dissipation_neg): return consistent + dissipation_pos + dissipation_neg