__copyright__ = "Copyright (C) 2014-6 Shivam Gupta, Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import pathlib from functools import partial import numpy as np import pytest from arraycontext import pytest_generate_tests_for_array_contexts import meshmode.mesh.generation as mgen from meshmode import _acf # noqa: F401 from meshmode.array_context import PytestPyOpenCLArrayContextFactory from meshmode.discretization.poly_element import ( GaussLegendreTensorProductGroupFactory, InterpolatoryQuadratureSimplexGroupFactory, LegendreGaussLobattoTensorProductGroupFactory, PolynomialEquidistantSimplexGroupFactory, PolynomialWarpAndBlend2DRestrictingGroupFactory, PolynomialWarpAndBlend3DRestrictingGroupFactory, ) from meshmode.dof_array import flat_norm from meshmode.mesh import SimplexElementGroup, TensorProductElementGroup from meshmode.mesh.refinement import RefinerWithoutAdjacency logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts( [PytestPyOpenCLArrayContextFactory]) thisdir = pathlib.Path(__file__).parent def get_blob_mesh(mesh_par, order=4): # from meshmode.mesh.io import generate_gmsh, FileSource # return generate_gmsh( # FileSource("blob-2d.step"), 2, order=order, # force_ambient_dim=2, # other_options=[ # "-string", "Mesh.CharacteristicLengthMax = %s;" % mesh_par] # ) from meshmode.mesh.io import read_gmsh return read_gmsh( str(thisdir / f"blob2d-order{order}-h{mesh_par}.msh"), force_ambient_dim=2) def random_refine_flags(fract, mesh): all_els = list(range(mesh.nelements)) flags = np.zeros(mesh.nelements) from random import seed, shuffle seed(17) shuffle(all_els) for i in range(int(mesh.nelements * fract)): flags[all_els[i]] = 1 return flags def even_refine_flags(spacing, mesh): flags = np.zeros(mesh.nelements) flags[::spacing] = 1 return flags def empty_refine_flags(mesh): return np.zeros(mesh.nelements) def uniform_refine_flags(mesh): return np.ones(mesh.nelements) @pytest.mark.parametrize("group_factory", [ InterpolatoryQuadratureSimplexGroupFactory, "warp_and_blend", PolynomialEquidistantSimplexGroupFactory, LegendreGaussLobattoTensorProductGroupFactory, GaussLegendreTensorProductGroupFactory, ]) @pytest.mark.parametrize(("mesh_name", "dim", "mesh_pars"), [ ("circle", 1, [20, 30, 40]), ("blob", 2, ["8e-2", "6e-2", "4e-2"]), ("warp", 2, [4, 5, 6]), ("warp", 3, [4, 5, 6]), ]) @pytest.mark.parametrize("mesh_order", [1, 4, 5]) @pytest.mark.parametrize("refine_flags", [ # FIXME: slow #uniform_refine_flags, #partial(random_refine_flags, 0.4) partial(even_refine_flags, 2) ]) # test_refinement_connection(cl._csc, PolynomialWarpAndBlend2DRestrictingGroupFactory, 'warp', 2, [4, 5, 6], 5, partial(even_refine_flags, 2)) # noqa: E501 def test_refinement_connection( actx_factory, group_factory, mesh_name, dim, mesh_pars, mesh_order, refine_flags, visualize=False): if group_factory == "warp_and_blend": group_factory = { 1: PolynomialWarpAndBlend2DRestrictingGroupFactory, 2: PolynomialWarpAndBlend2DRestrictingGroupFactory, 3: PolynomialWarpAndBlend3DRestrictingGroupFactory, }[dim] group_cls = group_factory.mesh_group_class if issubclass(group_cls, TensorProductElementGroup): if mesh_name in ["circle", "blob"]: pytest.skip("mesh does not have tensor product support") from random import seed seed(13) actx = actx_factory() # discretization order order = 5 from pytools.convergence import EOCRecorder from meshmode.discretization import Discretization from meshmode.discretization.connection import ( check_connection, make_refinement_connection, ) eoc_rec = EOCRecorder() for mesh_par in mesh_pars: # {{{ get mesh if mesh_name == "circle": assert dim == 1 h = 1 / mesh_par mesh = mgen.make_curve_mesh( mgen.circle, np.linspace(0, 1, mesh_par + 1), order=mesh_order) elif mesh_name == "blob": if mesh_order == 5: pytest.xfail("https://gitlab.tiker.net/inducer/meshmode/issues/2") assert dim == 2 mesh = get_blob_mesh(mesh_par, mesh_order) h = float(mesh_par) elif mesh_name == "warp": # FIXME: Leftover from n -> nelements_per_axis/npoints_per_axis change; # should be nelements_per_axis, but if changed EOC order dips below # threshold and test fails. Likely just need to tweak mesh sizes. mesh = mgen.generate_warped_rect_mesh(dim, order=mesh_order, npoints_side=mesh_par, group_cls=group_cls) h = 1/mesh_par else: raise ValueError("mesh_name not recognized") # }}} from meshmode.mesh.processing import find_bounding_box mesh_bbox_low, mesh_bbox_high = find_bounding_box(mesh) mesh_ext = mesh_bbox_high-mesh_bbox_low def f(x): result = 1 if mesh_name == "blob": factor = 15 else: factor = 9 for iaxis in range(len(x)): result = result * actx.np.sin( factor * (x[iaxis]/mesh_ext[iaxis])) # noqa: B023 return result discr = Discretization(actx, mesh, group_factory(order)) refiner = RefinerWithoutAdjacency(mesh) flags = refine_flags(mesh) refiner.refine(flags) connection = make_refinement_connection( actx, refiner, discr, group_factory(order)) check_connection(actx, connection) fine_discr = connection.to_discr x = actx.thaw(discr.nodes()) x_fine = actx.thaw(fine_discr.nodes()) f_coarse = f(x) f_interp = connection(f_coarse) f_true = f(x_fine) if visualize == "dots": import matplotlib.cm as cm import matplotlib.pyplot as plt x = x.get(actx.queue) err = np.array(np.log10( 1e-16 + np.abs((f_interp - f_true).get(actx.queue))), dtype=float) # pylint: disable=no-member cmap = cm.ScalarMappable(cmap=cm.jet) cmap.set_array(err) plt.scatter(x[0], x[1], c=cmap.to_rgba(err), s=20, cmap=cmap) plt.colorbar(cmap) plt.show() elif visualize == "vtk": from meshmode.discretization.visualization import make_visualizer fine_vis = make_visualizer(actx, fine_discr, mesh_order) fine_vis.write_vtk_file( "refine-fine-%s-%dd-%s.vtu" % (mesh_name, dim, mesh_par), [ ("f_interp", f_interp), ("f_true", f_true), ]) err = flat_norm(f_interp - f_true, np.inf) eoc_rec.add_data_point(h, actx.to_numpy(err)) order_slack = 0.5 if mesh_name == "blob" and order > 1: order_slack = 1 print(eoc_rec) assert ( eoc_rec.order_estimate() >= order-order_slack or eoc_rec.max_error() < 1e-14) @pytest.mark.parametrize(("group_cls", "with_adjacency"), [ (SimplexElementGroup, True), (SimplexElementGroup, False), (TensorProductElementGroup, False) ]) def test_uniform_refinement(group_cls, with_adjacency): make_mesh = partial(mgen.generate_box_mesh, ( np.linspace(0.0, 1.0, 2), np.linspace(0.0, 1.0, 3), np.linspace(0.0, 1.0, 2)), order=4, group_cls=group_cls) mesh = make_mesh() from meshmode.mesh.refinement import refine_uniformly mesh = refine_uniformly(mesh, 1, with_adjacency=with_adjacency) @pytest.mark.parametrize("refinement_rounds", [0, 1, 2]) def test_conformity_of_uniform_mesh(refinement_rounds): mesh = mgen.generate_sphere(r=1.0, order=4, uniform_refinement_rounds=refinement_rounds) assert mesh.is_conforming from meshmode.mesh import BTAG_ALL, is_boundary_tag_empty assert is_boundary_tag_empty(mesh, BTAG_ALL) @pytest.mark.parametrize("mesh_name", ["torus", "icosphere", "cylinder"]) def test_refine_surfaces(actx_factory, mesh_name, visualize=False): if mesh_name == "torus": mesh = mgen.generate_torus(10, 1, 40, 4, order=4) elif mesh_name == "icosphere": mesh = mgen.generate_sphere(1, order=4) elif mesh_name == "cylinder": mesh = mgen.generate_surface_of_revolution( lambda x, y: np.ones(x.shape), np.linspace(1, 2), np.linspace(0, 2*np.pi, 6, endpoint=False), order=4) else: raise ValueError(f"invalid mesh name '{mesh_name}'") if visualize: actx = actx_factory() from meshmode.mesh.visualization import vtk_visualize_mesh vtk_visualize_mesh(actx, mesh, "surface.vtu") # check for absence of node-vertex consistency error from meshmode.mesh.refinement import refine_uniformly refined_mesh = refine_uniformly(mesh, 1) if visualize: actx = actx_factory() from meshmode.mesh.visualization import vtk_visualize_mesh vtk_visualize_mesh(actx, refined_mesh, "surface-refined.vtu") if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker