from __future__ import division, absolute_import, print_function __copyright__ = "Copyright (C) 2014-6 Shivam Gupta, Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging from functools import partial import pytest import pyopencl as cl import pyopencl.clmath # noqa import numpy as np from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from meshmode.mesh.generation import ( # noqa generate_icosahedron, generate_box_mesh, make_curve_mesh, ellipse) from meshmode.mesh.refinement.utils import check_nodal_adj_against_geometry from meshmode.mesh.refinement import Refiner, RefinerWithoutAdjacency from meshmode.discretization.poly_element import ( InterpolatoryQuadratureSimplexGroupFactory, PolynomialWarpAndBlendGroupFactory, PolynomialEquidistantSimplexGroupFactory, ) logger = logging.getLogger(__name__) def get_blob_mesh(mesh_par, order=4): # from meshmode.mesh.io import generate_gmsh, FileSource # return generate_gmsh( # FileSource("blob-2d.step"), 2, order=order, # force_ambient_dim=2, # other_options=[ # "-string", "Mesh.CharacteristicLengthMax = %s;" % mesh_par] # ) from meshmode.mesh.io import read_gmsh return read_gmsh( "blob2d-order%d-h%s.msh" % (order, mesh_par), force_ambient_dim=2) def random_refine_flags(fract, mesh): all_els = list(range(mesh.nelements)) flags = np.zeros(mesh.nelements) from random import shuffle, seed seed(17) shuffle(all_els) for i in range(int(mesh.nelements * fract)): flags[all_els[i]] = 1 return flags def even_refine_flags(spacing, mesh): flags = np.zeros(mesh.nelements) flags[::spacing] = 1 return flags def empty_refine_flags(mesh): return np.zeros(mesh.nelements) def uniform_refine_flags(mesh): return np.ones(mesh.nelements) @pytest.mark.parametrize(("case_name", "mesh_gen", "flag_gen", "num_generations"), [ # Fails? # ("icosahedron", # partial(generate_icosahedron, 1, order=1), # partial(random_refine_flags, 0.4), # 3), ("3_to_1_ellipse_unif", partial( make_curve_mesh, partial(ellipse, 3), np.linspace(0, 1, 21), order=1), uniform_refine_flags, 4), ("rect2d_rand", partial(generate_box_mesh, ( np.linspace(0, 1, 3), np.linspace(0, 1, 3), ), order=1), partial(random_refine_flags, 0.4), 4), ("rect2d_unif", partial(generate_box_mesh, ( np.linspace(0, 1, 2), np.linspace(0, 1, 2), ), order=1), uniform_refine_flags, 3), ("blob2d_rand", partial(get_blob_mesh, "6e-2", order=1), partial(random_refine_flags, 0.4), 4), ("rect3d_rand", partial(generate_box_mesh, ( np.linspace(0, 1, 2), np.linspace(0, 1, 3), np.linspace(0, 1, 2), ), order=1), partial(random_refine_flags, 0.4), 3), ("rect3d_unif", partial(generate_box_mesh, ( np.linspace(0, 1, 2), np.linspace(0, 1, 2)), order=1), uniform_refine_flags, 3), ]) def test_refinement(case_name, mesh_gen, flag_gen, num_generations): from random import seed seed(13) mesh = mesh_gen() r = Refiner(mesh) for _ in range(num_generations): flags = flag_gen(mesh) mesh = r.refine(flags) check_nodal_adj_against_geometry(mesh) @pytest.mark.parametrize("refiner_cls", [ Refiner, RefinerWithoutAdjacency ]) @pytest.mark.parametrize("group_factory", [ InterpolatoryQuadratureSimplexGroupFactory, PolynomialWarpAndBlendGroupFactory, PolynomialEquidistantSimplexGroupFactory ]) @pytest.mark.parametrize(("mesh_name", "dim", "mesh_pars"), [ ("circle", 1, [20, 30, 40]), ("blob", 2, ["8e-2", "6e-2", "4e-2"]), ("warp", 2, [4, 5, 6]), ("warp", 3, [4, 5, 6]), ]) @pytest.mark.parametrize("mesh_order", [1, 4, 5]) @pytest.mark.parametrize("refine_flags", [ # FIXME: slow #uniform_refine_flags, #partial(random_refine_flags, 0.4) partial(even_refine_flags, 2) ]) # test_refinement_connection(cl._csc, RefinerWithoutAdjacency, PolynomialWarpAndBlendGroupFactory, 'warp', 2, [4, 5, 6], 5, partial(even_refine_flags, 2)) # noqa: E501 def test_refinement_connection( ctx_getter, refiner_cls, group_factory, mesh_name, dim, mesh_pars, mesh_order, refine_flags, visualize=False): from random import seed seed(13) # Discretization order order = 5 cl_ctx = ctx_getter() queue = cl.CommandQueue(cl_ctx) from meshmode.discretization import Discretization from meshmode.discretization.connection import ( make_refinement_connection, check_connection) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for mesh_par in mesh_pars: # {{{ get mesh if mesh_name == "circle": assert dim == 1 h = 1 / mesh_par mesh = make_curve_mesh( partial(ellipse, 1), np.linspace(0, 1, mesh_par + 1), order=mesh_order) elif mesh_name == "blob": if mesh_order == 5: pytest.xfail("https://gitlab.tiker.net/inducer/meshmode/issues/2") assert dim == 2 mesh = get_blob_mesh(mesh_par, mesh_order) h = float(mesh_par) elif mesh_name == "warp": from meshmode.mesh.generation import generate_warped_rect_mesh mesh = generate_warped_rect_mesh(dim, order=mesh_order, n=mesh_par) h = 1/mesh_par else: raise ValueError("mesh_name not recognized") # }}} from meshmode.mesh.processing import find_bounding_box mesh_bbox_low, mesh_bbox_high = find_bounding_box(mesh) mesh_ext = mesh_bbox_high-mesh_bbox_low def f(x): result = 1 if mesh_name == "blob": factor = 15 else: factor = 9 for iaxis in range(len(x)): result = result * cl.clmath.sin(factor * (x[iaxis]/mesh_ext[iaxis])) return result discr = Discretization(cl_ctx, mesh, group_factory(order)) refiner = refiner_cls(mesh) flags = refine_flags(mesh) refiner.refine(flags) connection = make_refinement_connection( refiner, discr, group_factory(order)) check_connection(connection) fine_discr = connection.to_discr x = discr.nodes().with_queue(queue) x_fine = fine_discr.nodes().with_queue(queue) f_coarse = f(x) f_interp = connection(queue, f_coarse).with_queue(queue) f_true = f(x_fine).with_queue(queue) if visualize == "dots": import matplotlib.pyplot as plt x = x.get(queue) err = np.array(np.log10( 1e-16 + np.abs((f_interp - f_true).get(queue))), dtype=float) import matplotlib.cm as cm cmap = cm.ScalarMappable(cmap=cm.jet) cmap.set_array(err) plt.scatter(x[0], x[1], c=cmap.to_rgba(err), s=20, cmap=cmap) plt.colorbar(cmap) plt.show() elif visualize == "vtk": from meshmode.discretization.visualization import make_visualizer fine_vis = make_visualizer(queue, fine_discr, mesh_order) fine_vis.write_vtk_file( "refine-fine-%s-%dd-%s.vtu" % (mesh_name, dim, mesh_par), [ ("f_interp", f_interp), ("f_true", f_true), ]) import numpy.linalg as la err = la.norm((f_interp - f_true).get(queue), np.inf) eoc_rec.add_data_point(h, err) order_slack = 0.5 if mesh_name == "blob" and order > 1: order_slack = 1 print(eoc_rec) assert ( eoc_rec.order_estimate() >= order-order_slack or eoc_rec.max_error() < 1e-14) @pytest.mark.parametrize("with_adjacency", [True, False]) def test_uniform_refinement(with_adjacency): make_mesh = partial(generate_box_mesh, ( np.linspace(0.0, 1.0, 2), np.linspace(0.0, 1.0, 3), np.linspace(0.0, 1.0, 2)), order=4) mesh = make_mesh() from meshmode.mesh.refinement import refine_uniformly mesh = refine_uniformly(mesh, 1, with_adjacency=with_adjacency) @pytest.mark.parametrize("refinement_rounds", [0, 1, 2]) def test_conformity_of_uniform_mesh(refinement_rounds): from meshmode.mesh.generation import generate_icosphere mesh = generate_icosphere(r=1.0, order=4, uniform_refinement_rounds=refinement_rounds) assert mesh.is_conforming from meshmode.mesh import is_boundary_tag_empty, BTAG_ALL assert is_boundary_tag_empty(mesh, BTAG_ALL) if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker