Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • inducer/meshmode
  • eshoag2/meshmode
  • kaushikcfd/meshmode
  • xywei/meshmode
  • fikl2/meshmode
  • cory/meshmode
  • ben_sepanski/meshmode
  • njchris2/meshmode
8 results
Show changes
Showing
with 4196 additions and 1134 deletions
......@@ -3,28 +3,53 @@
Installation
============
This command should install :mod:`meshmode`::
This set of instructions is intended for 64-bit Linux and MacOS computers.
pip install meshmode
#. Make sure your system has the basics to build software.
(Note the extra "."!)
On Debian derivatives (Ubuntu and many more),
installing ``build-essential`` should do the trick.
You may need to run this with :command:`sudo`.
If you don't already have `pip <https://pypi.python.org/pypi/pip>`_,
run this beforehand::
Everywhere else, just making sure you have the ``g++`` package should be
enough.
curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
python get-pip.py
#. Install `miniforge <https://github.com/conda-forge/miniforge>`_::
For a more manual installation, `download the source
<http://pypi.python.org/pypi/meshmode>`_, unpack it, and say::
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
# then run
bash ./Miniforge3-*.sh
python setup.py install
#. ``export CONDA=/WHERE/YOU/INSTALLED/miniforge3``
You may also clone its git repository::
If you accepted the default location, this should work:
git clone --recursive git://github.com/inducer/meshmode
git clone --recursive http://git.tiker.net/trees/meshmode.git
``export CONDA=$HOME/miniforge3``
#. ``$CONDA/bin/conda create -n dgfem``
#. ``source $CONDA/bin/activate dgfem``
#. ``conda config --add channels conda-forge``
#. ``conda install git pip pocl islpy pyopencl``
#. Type the following command::
hash -r; for i in pymbolic cgen genpy modepy pyvisfile loopy arraycontext meshmode; do python -m pip install --editable "git+https://github.com/inducer/$i.git#egg=$i"; done
.. note::
In each case, you may leave out the ``--editable`` flag if you would not like
a checkout of the source code.
Next time you want to use :mod:`meshmode`, just run the following command::
source /WHERE/YOU/INSTALLED/miniforge3/bin/activate dgfem
You may also like to add this to a startup file (like :file:`$HOME/.bashrc`) or create an alias for it.
After this, you should be able to run the `tests <https://github.com/inducer/meshmode/tree/master/test>`_
or `examples <https://github.com/inducer/meshmode/tree/master/examples>`_.
User-visible Changes
====================
......@@ -69,11 +94,15 @@ OTHER DEALINGS IN THE SOFTWARE.
Acknowledgments
===============
Andreas Klöckner's work on :mod:`meshmode` was supported in part by
Work on meshmode was supported in part by
* the Department of Energy, National Nuclear Security Administration,
under Award Number DE-NA0003963,
* the US Navy ONR, under grant number N00014-14-1-0117, and
* the US National Science Foundation under grant numbers DMS-1418961, CCF-1524433,
DMS-1654756, SHF-1911019, and OAC-1931577.
* US Navy ONR grant number N00014-14-1-0117
* the US National Science Foundation under grant numbers DMS-1418961 and CCF-1524433.
AK also gratefully acknowledges a hardware gift from Nvidia Corporation.
AK also gratefully acknowledges a hardware gift from Nvidia Corporation. The
views and opinions expressed herein do not necessarily reflect those of the
The views and opinions expressed herein do not necessarily reflect those of the
funding agencies.
#! /bin/sh
rsync --verbose --archive --delete _build/html/* doc-upload:doc/meshmode
rsync --verbose --archive --delete _build/html/ doc-upload:doc/meshmode
__copyright__ = "Copyright (C) 2020 Benjamin Sepanski"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
# This example provides a brief template for bringing information in
# from firedrake and makes some plots to help you better understand
# what a FromBoundaryFiredrakeConnection does
def main(visualize=True):
# If can't import firedrake, do nothing
#
# filename MUST include "firedrake" (i.e. match *firedrake*.py) in order
# to be run during CI
try:
import firedrake # noqa : F401
except ImportError:
return 0
from firedrake import (
Function,
FunctionSpace,
SpatialCoordinate,
UnitSquareMesh,
cos,
)
from meshmode.interop.firedrake import build_connection_from_firedrake
# Create a firedrake mesh and interpolate cos(x+y) onto it
fd_mesh = UnitSquareMesh(10, 10)
fd_fspace = FunctionSpace(fd_mesh, "DG", 2)
spatial_coord = SpatialCoordinate(fd_mesh)
fd_fntn = Function(fd_fspace).interpolate(cos(sum(spatial_coord)))
# Make connections
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
fd_connection = build_connection_from_firedrake(actx, fd_fspace)
fd_bdy_connection = \
build_connection_from_firedrake(actx,
fd_fspace,
restrict_to_boundary="on_boundary")
# Plot the meshmode meshes that the connections connect to
import matplotlib.pyplot as plt
from meshmode.mesh.visualization import draw_2d_mesh
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.set_title("FiredrakeConnection")
plt.sca(ax1)
draw_2d_mesh(fd_connection.discr.mesh,
draw_vertex_numbers=False,
draw_element_numbers=False,
set_bounding_box=True)
ax2.set_title("FiredrakeConnection 'on_boundary'")
plt.sca(ax2)
draw_2d_mesh(fd_bdy_connection.discr.mesh,
draw_vertex_numbers=False,
draw_element_numbers=False,
set_bounding_box=True)
plt.show()
# Plot fd_fntn using unrestricted FiredrakeConnection
from meshmode.discretization.visualization import make_visualizer
discr = fd_connection.discr
vis = make_visualizer(actx, discr, discr.groups[0].order+3)
field = fd_connection.from_firedrake(fd_fntn, actx=actx)
if visualize:
fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1, projection="3d")
ax1.set_title("cos(x+y) in\nFiredrakeConnection")
vis.show_scalar_in_matplotlib_3d(field, do_show=False)
# Now repeat using FiredrakeConnection restricted to "on_boundary"
bdy_discr = fd_bdy_connection.discr
bdy_vis = make_visualizer(actx, bdy_discr, bdy_discr.groups[0].order+3)
bdy_field = fd_bdy_connection.from_firedrake(fd_fntn, actx=actx)
if visualize:
ax2 = fig.add_subplot(1, 2, 2, projection="3d")
plt.sca(ax2)
ax2.set_title("cos(x+y) in\nFiredrakeConnection 'on_boundary'")
bdy_vis.show_scalar_in_matplotlib_3d(bdy_field, do_show=False)
import matplotlib.cm as cm
fig.colorbar(cm.ScalarMappable(), ax=ax2)
plt.show()
if __name__ == "__main__":
main()
# vim: foldmethod=marker
from meshmode.mesh.io import FileSource, generate_gmsh
from meshmode.mesh.visualization import mesh_to_tikz
h = 0.3
order = 1
mesh = generate_gmsh(
FileSource("../test/blob-2d.step"), 2, order=order,
force_ambient_dim=2,
other_options=[
"-string", "Mesh.CharacteristicLengthMax = %s;" % h]
)
print(mesh_to_tikz(mesh))
__copyright__ = "Copyright (C) 2021 Alexandru Fikl"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
import numpy as np
import pyopencl as cl
from pytools import keyed_memoize_in
from pytools.obj_array import make_obj_array
from meshmode.array_context import PyOpenCLArrayContext
from meshmode.transform_metadata import FirstAxisIsElementsTag
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def plot_solution(actx, vis, filename, discr, t, x):
names_and_fields = []
try:
from pytential import bind, sym
kappa = bind(discr, sym.mean_curvature(discr.ambient_dim))(actx)
names_and_fields.append(("kappa", kappa))
except ImportError:
pass
vis.write_vtk_file(filename, names_and_fields, overwrite=True)
def reconstruct_discr_from_nodes(actx, discr, x):
@keyed_memoize_in(actx,
(reconstruct_discr_from_nodes, "to_mesh_interp_matrix"),
lambda grp: grp.discretization_key())
def to_mesh_interp_matrix(grp) -> np.ndarray:
import modepy as mp
mat = mp.resampling_matrix(
grp.basis_obj().functions,
grp.mesh_el_group.unit_nodes,
grp.unit_nodes)
return actx.freeze(actx.from_numpy(mat))
def resample_nodes_to_mesh(grp, igrp, iaxis):
discr_nodes = x[iaxis][igrp]
grp_unit_nodes = grp.unit_nodes.reshape(-1)
meg_unit_nodes = grp.mesh_el_group.unit_nodes.reshape(-1)
tol = 10 * np.finfo(grp_unit_nodes.dtype).eps
if (grp_unit_nodes.shape == meg_unit_nodes.shape
and np.linalg.norm(grp_unit_nodes - meg_unit_nodes) < tol):
return discr_nodes
return actx.einsum("ij,ej->ei",
to_mesh_interp_matrix(grp),
discr_nodes,
tagged=(FirstAxisIsElementsTag(),))
from dataclasses import replace
megs = []
for igrp, grp in enumerate(discr.groups):
nodes = np.stack([
actx.to_numpy(resample_nodes_to_mesh(grp, igrp, iaxis))
for iaxis in range(discr.ambient_dim)
])
meg = replace(grp.mesh_el_group, vertex_indices=None, nodes=nodes)
megs.append(meg)
mesh = discr.mesh.copy(groups=megs, vertices=None)
return discr.copy(actx, mesh=mesh)
def advance(actx, dt, t, x, fn):
# NOTE: everybody's favorite three stage SSP RK3 method
k1 = x + dt * fn(t, x)
k2 = 3.0 / 4.0 * x + 1.0 / 4.0 * (k1 + dt * fn(t + dt, k1))
return 1.0 / 3.0 * x + 2.0 / 3.0 * (k2 + dt * fn(t + 0.5 * dt, k2))
def run(actx, *,
ambient_dim: int = 3,
resolution: int | None = None,
target_order: int = 4,
tmax: float = 1.0,
timestep: float = 1.0e-2,
group_factory_name: str = "warp_and_blend",
visualize: bool = True):
if ambient_dim not in (2, 3):
raise ValueError(f"unsupported dimension: {ambient_dim}")
mesh_order = target_order
radius = 1.0
# {{{ geometry
# {{{ element groups
import modepy as mp
import meshmode.discretization.poly_element as poly
# NOTE: picking the same unit nodes for the mesh and the discr saves
# a bit of work when reconstructing after a time step
if group_factory_name == "warp_and_blend":
group_factory_cls: type[poly.HomogeneousOrderBasedGroupFactory] = (
poly.PolynomialWarpAndBlend2DRestrictingGroupFactory)
unit_nodes = mp.warp_and_blend_nodes(ambient_dim - 1, mesh_order)
elif group_factory_name == "quadrature":
group_factory_cls = poly.InterpolatoryQuadratureSimplexGroupFactory
if ambient_dim == 2:
unit_nodes = mp.LegendreGaussQuadrature(
mesh_order, force_dim_axis=True).nodes
else:
unit_nodes = mp.VioreanuRokhlinSimplexQuadrature(mesh_order, 2).nodes
else:
raise ValueError(f"unknown group factory: '{group_factory_name}'")
# }}}
# {{{ discretization
import meshmode.mesh.generation as gen
if ambient_dim == 2:
nelements = 8192 if resolution is None else resolution
mesh = gen.make_curve_mesh(
lambda t: radius * gen.ellipse(1.0, t),
np.linspace(0.0, 1.0, nelements + 1),
order=mesh_order,
unit_nodes=unit_nodes)
else:
nrounds = 4 if resolution is None else resolution
mesh = gen.generate_sphere(radius,
uniform_refinement_rounds=nrounds,
order=mesh_order,
unit_nodes=unit_nodes)
from meshmode.discretization import Discretization
discr0 = Discretization(actx, mesh, group_factory_cls(target_order))
logger.info("ndofs: %d", discr0.ndofs)
logger.info("nelements: %d", discr0.mesh.nelements)
# }}}
if visualize:
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(actx, discr0,
vis_order=target_order,
# NOTE: setting this to True will add some unnecessary
# resampling in Discretization.nodes for the vis_discr underneath
force_equidistant=False)
# }}}
# {{{ ode
def velocity_field(nodes, alpha=1.0):
return make_obj_array([
alpha * nodes[0], -alpha * nodes[1], 0.0 * nodes[0]
][:ambient_dim])
def source(t, x):
discr = reconstruct_discr_from_nodes(actx, discr0, x)
u = velocity_field(actx.thaw(discr.nodes()))
# {{{
# NOTE: these are just here because this was at some point used to
# profile some more operators (turned out well!)
from meshmode.discretization import num_reference_derivative
x = actx.thaw(discr.nodes()[0])
gradx = sum(
num_reference_derivative(discr, (i,), x)
for i in range(discr.dim))
intx = sum(actx.np.sum(xi * wi)
for xi, wi in zip(x, discr.quad_weights(), strict=True))
assert gradx is not None
assert intx is not None
# }}}
return u
# }}}
# {{{ evolve
maxiter = int(tmax // timestep) + 1
dt = tmax / maxiter + 1.0e-15
x = actx.thaw(discr0.nodes())
t = 0.0
if visualize:
filename = f"moving-geometry-{0:09d}.vtu"
plot_solution(actx, vis, filename, discr0, t, x)
for n in range(1, maxiter + 1):
x = advance(actx, dt, t, x, source)
t += dt
if visualize:
discr = reconstruct_discr_from_nodes(actx, discr0, x)
vis = make_visualizer(actx, discr, vis_order=target_order)
# vis = vis.copy_with_same_connectivity(actx, discr)
filename = f"moving-geometry-{n:09d}.vtu"
plot_solution(actx, vis, filename, discr, t, x)
logger.info("[%05d/%05d] t = %.5e/%.5e dt = %.5e",
n, maxiter, t, tmax, dt)
# }}}
if __name__ == "__main__":
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from pytools import ProcessTimer
for _ in range(1):
with ProcessTimer() as p:
run(actx,
ambient_dim=3,
group_factory_name="warp_and_blend",
tmax=1.0,
timestep=1.0e-2,
visualize=False)
logger.info("elapsed: %.3fs wall %.2fx cpu",
p.wall_elapsed, p.process_elapsed / p.wall_elapsed)
from __future__ import division
import sys
import numpy as np # noqa
import numpy as np
order = 4
def main():
from meshmode.mesh.generation import ( # noqa
make_curve_mesh, starfish)
from meshmode.mesh.generation import make_curve_mesh, starfish
mesh1 = make_curve_mesh(starfish, np.linspace(0, 1, 20), 4)
from meshmode.mesh.processing import affine_map, merge_disjoint_meshes
......@@ -20,7 +19,11 @@ def main():
draw_2d_mesh(mesh, set_bounding_box=True)
import matplotlib.pyplot as pt
pt.show()
if sys.stdin.isatty():
pt.show()
else:
pt.savefig("plot.pdf")
if __name__ == "__main__":
main()
import logging
import numpy as np
from meshmode.mesh import Mesh
logger = logging.getLogger(__file__)
def make_example_mesh(ambient_dim: int, nelements: int, order: int) -> Mesh:
import meshmode.mesh.generation as mgen
if ambient_dim == 2:
return mgen.make_curve_mesh(
mgen.starfish,
np.linspace(0.0, 1.0, nelements + 1),
order=order)
else:
return mgen.generate_torus(4.0, 2.0,
n_major=nelements, n_minor=nelements // 2,
order=order)
def main(*, ambient_dim: int) -> None:
logging.basicConfig(level=logging.INFO)
import h5py
if "mpio" not in h5py.registered_drivers():
logger.info("h5py does not have the 'mpio' driver")
return
from meshmode import _acf
actx = _acf()
from mpi4py import MPI
comm = MPI.COMM_WORLD
from meshmode.distributed import membership_list_to_map
from meshmode.mesh.processing import partition_mesh
order = 5
nelements = 64 if ambient_dim == 3 else 256
logger.info("[%4d] distributing mesh: started", comm.rank)
if comm.rank == 0:
mesh = make_example_mesh(ambient_dim, nelements, order=order)
logger.info("[%4d] mesh: nelements %d nvertices %d",
comm.rank, mesh.nelements, mesh.nvertices)
rng = np.random.default_rng()
part_id_to_part = partition_mesh(mesh,
membership_list_to_map(
rng.integers(comm.size, size=mesh.nelements)))
parts = [part_id_to_part[i] for i in range(comm.size)]
local_mesh = comm.scatter(parts)
else:
local_mesh = comm.scatter(None)
logger.info("[%4d] distributing mesh: finished", comm.rank)
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import default_simplex_group_factory
discr = Discretization(actx, local_mesh,
default_simplex_group_factory(local_mesh.dim, order=order))
logger.info("[%4d] discretization: finished", comm.rank)
vector_field = actx.thaw(discr.nodes())
scalar_field = actx.np.sin(vector_field[0])
part_id = 1.0 + comm.rank + discr.zeros(actx)
logger.info("[%4d] fields: finished", comm.rank)
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(actx, discr, force_equidistant=False)
logger.info("[%4d] make_visualizer: finished", comm.rank)
filename = f"parallel-vtkhdf-example-{ambient_dim}d.hdf"
vis.write_vtkhdf_file(filename, [
("scalar", scalar_field),
("vector", vector_field),
("part_id", part_id)
], comm=comm, overwrite=True, use_high_order=False)
logger.info("[%4d] write: finished: %s", comm.rank, filename)
if __name__ == "__main__":
try:
main(ambient_dim=2)
main(ambient_dim=3)
except ImportError as exc:
logger.info(exc)
from __future__ import division
import numpy as np # noqa
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
order = 4
......@@ -10,30 +11,34 @@ order = 4
def main():
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
from meshmode.mesh.generation import ( # noqa: F401
generate_icosahedron,
generate_sphere,
generate_torus,
)
from meshmode.mesh.generation import ( # noqa
generate_icosphere, generate_icosahedron,
generate_torus)
#mesh = generate_icosphere(1, order=order)
#mesh = generate_sphere(1, order=order)
mesh = generate_icosahedron(1, order=order)
#mesh = generate_torus(3, 1, order=order)
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import \
PolynomialWarpAndBlendGroupFactory
from meshmode.discretization.poly_element import (
PolynomialWarpAndBlend3DRestrictingGroupFactory,
)
discr = Discretization(
cl_ctx, mesh, PolynomialWarpAndBlendGroupFactory(order))
actx, mesh, PolynomialWarpAndBlend3DRestrictingGroupFactory(order))
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(queue, discr, order)
vis = make_visualizer(actx, discr, order)
vis.write_vtk_file("geometry.vtu", [
("f", discr.nodes()[0]),
("f", actx.thaw(discr.nodes()[0])),
])
from meshmode.discretization.visualization import \
write_nodal_adjacency_vtk_file
from meshmode.discretization.visualization import write_nodal_adjacency_vtk_file
write_nodal_adjacency_vtk_file("adjacency.vtu",
mesh)
......
from __future__ import division, print_function
from six.moves import range
import numpy as np # noqa
import pyopencl as cl
import random
import os
import logging
order = 1
from meshmode.mesh.refinement.utils import check_nodal_adj_against_geometry
from meshmode.mesh.refinement import Refiner
#construct vertex vertex_index
def remove_if_exists(name):
from errno import ENOENT
try:
os.remove(name)
except OSError as e:
if e.errno == ENOENT:
pass
else:
raise
def linear_func(vert):
csum = 0
for i in vert:
csum += i
#print csum
return csum
def sine_func(vert):
#print vert
import math
res = 1
for i in vert:
res *= math.sin(i*2.0*math.pi)
#print res
return abs(res) * 0.2 + 0.2
def quadratic_func(vert):
csum = 0
for i in vert:
csum += i * i
return csum * 1.5
def get_function_flags(mesh, function):
from math import sqrt
flags = np.zeros(len(mesh.groups[0].vertex_indices))
for grp in mesh.groups:
for iel_grp in range(grp.nelements):
vertex_indices = grp.vertex_indices[iel_grp]
max_edge_len = 0
for i in range(len(vertex_indices)):
for j in range(i+1, len(vertex_indices)):
edge_len = 0
for k in range(len(mesh.vertices)):
edge_len += (
(mesh.vertices[k, vertex_indices[i]]
- mesh.vertices[k, vertex_indices[j]])
* (mesh.vertices[k, vertex_indices[i]]
- mesh.vertices[k, vertex_indices[j]]))
edge_len = sqrt(edge_len)
max_edge_len = max(max_edge_len, edge_len)
#print(edge_lens[0], mesh.vertices[0, vertex_indices[i]], mesh.vertices[1, vertex_indices[i]], mesh.vertices[2, vertex_indices[i]]) # noqa
centroid = [0] * len(mesh.vertices)
for j in range(len(mesh.vertices)):
centroid[j] += mesh.vertices[j, vertex_indices[i]]
for i in range(len(mesh.vertices)):
centroid[i] /= len(vertex_indices)
val = function(centroid)
if max_edge_len > val:
flags[iel_grp] = True
return flags
def get_corner_flags(mesh):
flags = np.zeros(len(mesh.groups[0].vertex_indices))
for grp in mesh.groups:
for iel_grp in range(grp.nelements):
is_corner_el = False
vertex_indices = grp.vertex_indices[iel_grp]
for i in range(len(vertex_indices)):
cur_vertex_corner = True
for j in range(len(mesh.vertices)):
print(iel_grp, i, mesh.vertices[j, vertex_indices[i]])
if mesh.vertices[j, vertex_indices[i]] != 0.0:
cur_vertex_corner = False
if cur_vertex_corner:
is_corner_el = True
break
if is_corner_el:
print(iel_grp)
flags[iel_grp] = True
return flags
def get_random_flags(mesh):
flags = np.zeros(len(mesh.groups[0].vertex_indices))
for i in range(0, len(flags)):
flags[i] = random.randint(0, 1)
return flags
def refine_and_generate_chart_function(mesh, filename, function):
from time import clock
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
print("NELEMENTS: ", mesh.nelements)
#print mesh
for i in range(len(mesh.groups[0].vertex_indices[0])):
for k in range(len(mesh.vertices)):
print(mesh.vertices[k, i])
#check_nodal_adj_against_geometry(mesh);
r = Refiner(mesh)
#random.seed(0)
#times = 3
num_elements = []
time_t = []
#nelements = mesh.nelements
while True:
print("NELS:", mesh.nelements)
#flags = get_corner_flags(mesh)
flags = get_function_flags(mesh, function)
nels = 0
for i in flags:
if i:
nels += 1
if nels == 0:
break
print("LKJASLFKJALKASF:", nels)
num_elements.append(nels)
#flags = get_corner_flags(mesh)
beg = clock()
mesh = r.refine(flags)
end = clock()
time_taken = end - beg
time_t.append(time_taken)
#if nelements == mesh.nelements:
#break
#nelements = mesh.nelements
#from meshmode.mesh.visualization import draw_2d_mesh
#draw_2d_mesh(mesh, True, True, True, fill=None)
#import matplotlib.pyplot as pt
#pt.show()
#poss_flags = np.zeros(len(mesh.groups[0].vertex_indices))
#for i in range(0, len(flags)):
# poss_flags[i] = flags[i]
#for i in range(len(flags), len(poss_flags)):
# poss_flags[i] = 1
import matplotlib.pyplot as pt
pt.xlabel('Number of elements being refined')
pt.ylabel('Time taken')
pt.plot(num_elements, time_t, "o")
pt.savefig(filename, format='pdf')
pt.clf()
print('DONE REFINING')
'''
flags = np.zeros(len(mesh.groups[0].vertex_indices))
flags[0] = 1
flags[1] = 1
mesh = r.refine(flags)
flags = np.zeros(len(mesh.groups[0].vertex_indices))
flags[0] = 1
flags[1] = 1
flags[2] = 1
mesh = r.refine(flags)
'''
#check_nodal_adj_against_geometry(mesh)
#r.print_rays(70)
#r.print_rays(117)
#r.print_hanging_elements(10)
#r.print_hanging_elements(117)
#r.print_hanging_elements(757)
#from meshmode.mesh.visualization import draw_2d_mesh
#draw_2d_mesh(mesh, False, False, False, fill=None)
#import matplotlib.pyplot as pt
#pt.show()
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import \
PolynomialWarpAndBlendGroupFactory
discr = Discretization(
cl_ctx, mesh, PolynomialWarpAndBlendGroupFactory(order))
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(queue, discr, order)
remove_if_exists("connectivity2.vtu")
remove_if_exists("geometry2.vtu")
vis.write_vtk_file("geometry2.vtu", [
("f", discr.nodes()[0]),
])
from meshmode.discretization.visualization import \
write_nodal_adjacency_vtk_file
write_nodal_adjacency_vtk_file("connectivity2.vtu",
mesh)
def main2():
from meshmode.mesh.generation import ( # noqa
generate_icosphere, generate_icosahedron,
generate_torus, generate_regular_rect_mesh,
generate_box_mesh)
# mesh = generate_icosphere(1, order=order)
#mesh = generate_icosahedron(1, order=order)
#mesh = generate_torus(3, 1, order=order)
#mesh = generate_regular_rect_mesh()
#mesh = generate_box_mesh(3*(np.linspace(0, 3, 5),))
#mesh = generate_box_mesh(3*(np.linspace(0, 1, 3),))
mesh = generate_box_mesh(3*(np.linspace(0, 1, 5),))
refine_and_generate_chart_function(mesh, "plot.pdf", sine_func)
def all_refine(num_mesh, depth, fname):
from meshmode.mesh.generation import ( # noqa
generate_icosphere, generate_icosahedron,
generate_torus, generate_regular_rect_mesh,
generate_box_mesh)
import timeit
nelements = []
runtimes = []
for el_fact in range(2, num_mesh+2):
mesh = generate_box_mesh(3*(np.linspace(0, 1, el_fact),))
r = Refiner(mesh)
for time in range(depth):
flags = np.ones(len(mesh.groups[0].vertex_indices))
if time < depth-1:
mesh = r.refine(flags)
else:
start = timeit.default_timer()
mesh = r.refine(flags)
stop = timeit.default_timer()
nelements.append(mesh.nelements)
runtimes.append(stop-start)
check_nodal_adj_against_geometry(mesh)
import matplotlib.pyplot as pt
pt.plot(nelements, runtimes, "o")
pt.savefig(fname)
pt.clf()
#pt.show()
def uniform_refine(num_mesh, fract, depth, fname):
from meshmode.mesh.generation import ( # noqa
generate_icosphere, generate_icosahedron,
generate_torus, generate_regular_rect_mesh,
generate_box_mesh)
import timeit
nelements = []
runtimes = []
for el_fact in range(2, num_mesh+2):
mesh = generate_box_mesh(3*(np.linspace(0, 1, el_fact),))
r = Refiner(mesh)
all_els = list(range(mesh.nelements))
for time in range(depth):
print("EL_FACT", el_fact, "TIME", time)
flags = np.zeros(mesh.nelements)
from random import shuffle, seed
seed(1)
shuffle(all_els)
nels_this_round = 0
for i in range(len(all_els)):
if i / len(flags) > fract:
break
flags[all_els[i]] = 1
nels_this_round += 1
if time < depth-1:
mesh = r.refine(flags)
else:
start = timeit.default_timer()
mesh = r.refine(flags)
stop = timeit.default_timer()
nelements.append(mesh.nelements)
runtimes.append(stop-start)
all_els = []
for i in range(len(flags)):
if flags[i]:
all_els.append(i)
for i in range(len(flags), mesh.nelements):
all_els.append(i)
check_nodal_adj_against_geometry(mesh)
import matplotlib.pyplot as pt
pt.plot(nelements, runtimes, "o")
pt.savefig(fname)
pt.clf()
if __name__ == "__main__":
logging.basicConfig(level="DEBUG")
print("HEREERERE")
#all_refine(3, 2, 'all_a.pdf')
all_refine(3, 3, 'all_b.pdf')
#uniform_refine(3, 0.2, 3, 'uniform_a.pdf')
#main2()
__copyright__ = "Copyright (C) 2020 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
from dataclasses import dataclass
import numpy as np
import numpy.linalg as la # noqa
import pyopencl as cl
import pyopencl.array as cla # noqa
from arraycontext import (
ArrayContainer,
dataclass_array_container,
map_array_container,
with_container_arithmetic,
)
from pytools import log_process, memoize_method
from pytools.obj_array import flat_obj_array, make_obj_array
from meshmode.array_context import PyOpenCLArrayContext, PytatoPyOpenCLArrayContext
from meshmode.dof_array import DOFArray, flat_norm
from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa
from meshmode.transform_metadata import FirstAxisIsElementsTag
logger = logging.getLogger(__name__)
# Features lost vs. https://github.com/inducer/grudge:
# - dimension independence / differential geometry
# - overintegration
# - operator fusion
# - distributed-memory
# {{{ discretization
def parametrization_derivative(actx, discr):
thawed_nodes = actx.thaw(discr.nodes())
from meshmode.discretization import num_reference_derivative
result = np.zeros((discr.ambient_dim, discr.dim), dtype=object)
for iambient in range(discr.ambient_dim):
for idim in range(discr.dim):
result[iambient, idim] = num_reference_derivative(discr,
(idim,), thawed_nodes[iambient])
return result
class DGDiscretization:
def __init__(self, actx, mesh, order):
self.order = order
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import (
PolynomialWarpAndBlend2DRestrictingGroupFactory,
)
self.group_factory = PolynomialWarpAndBlend2DRestrictingGroupFactory(
order=order)
self.volume_discr = Discretization(actx, mesh, self.group_factory)
assert self.volume_discr.dim == 2
@property
def _setup_actx(self):
return self.volume_discr._setup_actx
@property
def dim(self):
return self.volume_discr.dim
# {{{ discretizations/connections
@memoize_method
def boundary_connection(self, boundary_tag):
from meshmode.discretization.connection import make_face_restriction
return make_face_restriction(
self.volume_discr._setup_actx,
self.volume_discr,
self.group_factory,
boundary_tag=boundary_tag)
@memoize_method
def interior_faces_connection(self):
from meshmode.discretization.connection import (
FACE_RESTR_INTERIOR,
make_face_restriction,
)
return make_face_restriction(
self.volume_discr._setup_actx,
self.volume_discr,
self.group_factory,
FACE_RESTR_INTERIOR,
per_face_groups=False)
@memoize_method
def opposite_face_connection(self):
from meshmode.discretization.connection import make_opposite_face_connection
return make_opposite_face_connection(
self._setup_actx, self.interior_faces_connection())
@memoize_method
def all_faces_connection(self):
from meshmode.discretization.connection import (
FACE_RESTR_ALL,
make_face_restriction,
)
return make_face_restriction(
self.volume_discr._setup_actx,
self.volume_discr,
self.group_factory,
FACE_RESTR_ALL,
per_face_groups=False)
@memoize_method
def get_to_all_face_embedding(self, where):
from meshmode.discretization.connection import make_face_to_all_faces_embedding
faces_conn = self.get_connection("vol", where)
return make_face_to_all_faces_embedding(
self._setup_actx, faces_conn, self.get_discr("all_faces"))
def get_connection(self, src, tgt):
src_tgt = (src, tgt)
if src_tgt == ("vol", "int_faces"):
return self.interior_faces_connection()
elif src_tgt == ("vol", "all_faces"):
return self.all_faces_connection()
elif src_tgt == ("vol", BTAG_ALL):
return self.boundary_connection(tgt)
elif src_tgt == ("int_faces", "all_faces"):
return self.get_to_all_face_embedding(src)
elif src_tgt == (BTAG_ALL, "all_faces"):
return self.get_to_all_face_embedding(src)
else:
raise ValueError(f"locations '{src}'->'{tgt}' not understood")
def interp(self, src, tgt, vec):
return self.get_connection(src, tgt)(vec)
def get_discr(self, where):
if where == "vol":
return self.volume_discr
elif where == "all_faces":
return self.all_faces_connection().to_discr
elif where == "int_faces":
return self.interior_faces_connection().to_discr
elif where == BTAG_ALL:
return self.boundary_connection(where).to_discr
else:
raise ValueError(f"location '{where}' not understood")
# }}}
@memoize_method
def parametrization_derivative(self):
return self._setup_actx.freeze(
parametrization_derivative(self._setup_actx, self.volume_discr))
@memoize_method
def vol_jacobian(self):
[a, b], [c, d] = self._setup_actx.thaw(self.parametrization_derivative())
return self._setup_actx.freeze(a*d - b*c)
@memoize_method
def inverse_parametrization_derivative(self):
[a, b], [c, d] = self._setup_actx.thaw(self.parametrization_derivative())
result = np.zeros((2, 2), dtype=object)
det = a*d-b*c
result[0, 0] = d/det
result[0, 1] = -b/det
result[1, 0] = -c/det
result[1, 1] = a/det
return self._setup_actx.freeze(result)
def zeros(self, actx):
return self.volume_discr.zeros(actx)
def grad(self, vec):
ipder = vec.array_context.thaw(self.inverse_parametrization_derivative())
from meshmode.discretization import num_reference_derivative
dref = [
num_reference_derivative(self.volume_discr, (idim,), vec)
for idim in range(self.volume_discr.dim)]
return make_obj_array([
sum(dref_i*ipder_i
for dref_i, ipder_i in zip(dref, ipder[iambient], strict=True))
for iambient in range(self.volume_discr.ambient_dim)])
def div(self, vecs):
return sum(
self.grad(vec_i)[i] for i, vec_i in enumerate(vecs))
@memoize_method
def normal(self, where):
bdry_discr = self.get_discr(where)
((a,), (b,)) = parametrization_derivative(self._setup_actx, bdry_discr)
nrm = 1/(a**2+b**2)**0.5
return self._setup_actx.freeze(flat_obj_array(b*nrm, -a*nrm))
@memoize_method
def face_jacobian(self, where):
bdry_discr = self.get_discr(where)
((a,), (b,)) = parametrization_derivative(self._setup_actx, bdry_discr)
return self._setup_actx.freeze((a**2 + b**2)**0.5)
@memoize_method
def get_inverse_mass_matrix(self, grp, dtype):
import modepy as mp
matrix = mp.inverse_mass_matrix(grp.basis_obj(), grp.unit_nodes)
actx = self._setup_actx
return actx.freeze(actx.from_numpy(matrix))
def inverse_mass(self, vec):
if not isinstance(vec, DOFArray):
return map_array_container(self.inverse_mass, vec)
actx = vec.array_context
dtype = vec.entry_dtype
discr = self.volume_discr
return DOFArray(
actx,
data=tuple(
actx.einsum(
"ij,ej->ei",
self.get_inverse_mass_matrix(grp, dtype),
vec_i,
arg_names=("mass_inv_mat", "vec"),
tagged=(FirstAxisIsElementsTag(),)
) for grp, vec_i in zip(discr.groups, vec, strict=True)
)
) / actx.thaw(self.vol_jacobian())
@memoize_method
def get_local_face_mass_matrix(self, afgrp, volgrp, dtype):
nfaces = volgrp.mesh_el_group.nfaces
assert afgrp.nelements == nfaces * volgrp.nelements
matrix = np.empty(
(volgrp.nunit_dofs,
nfaces,
afgrp.nunit_dofs),
dtype=dtype)
import modepy as mp
shape = mp.Simplex(volgrp.dim)
for face in mp.faces_for_shape(shape):
from modepy import PN, Simplex, basis_for_space, quadrature_for_space
face_space = PN(volgrp.dim - 1, volgrp.order)
face_shape = Simplex(volgrp.dim-1)
face_quad = quadrature_for_space(face_space, face_shape)
face_basis = basis_for_space(face_space, face_shape)
matrix[:, face.face_index, :] = mp.nodal_mass_matrix_for_face(
face, face_quad,
face_basis.functions,
volgrp.basis_obj().functions,
volgrp.unit_nodes, afgrp.unit_nodes)
actx = self._setup_actx
return actx.freeze(actx.from_numpy(matrix))
def face_mass(self, vec):
if not isinstance(vec, DOFArray):
return map_array_container(self.face_mass, vec)
actx = vec.array_context
dtype = vec.entry_dtype
all_faces_conn = self.get_connection("vol", "all_faces")
all_faces_discr = all_faces_conn.to_discr
vol_discr = all_faces_conn.from_discr
fj = vec.array_context.thaw(self.face_jacobian("all_faces"))
vec = vec*fj
assert len(all_faces_discr.groups) == len(vol_discr.groups)
return DOFArray(
actx,
data=tuple(
actx.einsum("ifj,fej->ei",
self.get_local_face_mass_matrix(afgrp, volgrp, dtype),
vec_i.reshape(
volgrp.mesh_el_group.nfaces,
volgrp.nelements,
afgrp.nunit_dofs
),
tagged=(FirstAxisIsElementsTag(),))
for afgrp, volgrp, vec_i in zip(all_faces_discr.groups,
vol_discr.groups,
vec, strict=True)
)
)
# }}}
# {{{ trace pair
@with_container_arithmetic(
bcast_obj_array=False, eq_comparison=False, rel_comparison=False)
@dataclass_array_container
@dataclass(frozen=True)
class TracePair:
where: str
interior: ArrayContainer
exterior: ArrayContainer
# NOTE: let the container do the broadcasting + arithmetic
__array_ufunc__ = None
def __getattr__(self, name):
return map_array_container(
lambda ary: getattr(ary, name),
self)
@property
def int(self):
return self.interior
@property
def ext(self):
return self.exterior
@property
def avg(self):
return 0.5*(self.int + self.ext)
def interior_trace_pair(discr, vec):
i = discr.interp("vol", "int_faces", vec)
e = discr.opposite_face_connection()(i)
return TracePair("int_faces", interior=i, exterior=e)
# }}}
# {{{ wave equation bits
def wave_flux(actx, discr, c, q_tpair):
u = q_tpair.u
v = q_tpair.v
normal = actx.thaw(discr.normal(q_tpair.where))
flux_weak = WaveState(
u=np.dot(v.avg, normal),
v=normal * u.avg)
# upwind
v_jump = np.dot(normal, v.ext-v.int)
flux_weak += WaveState(
u=0.5*(u.ext-u.int),
v=0.5*normal*v_jump)
flux_strong = WaveState(
u=np.dot(v.int, normal),
v=u.int * normal,
) - flux_weak
return discr.interp(q_tpair.where, "all_faces", c*flux_strong)
def wave_operator(actx, discr, c, q):
dir_q = discr.interp("vol", BTAG_ALL, q)
dir_bc = WaveState(u=-dir_q.u, v=dir_q.v)
return (
WaveState(
u=c*discr.div(q.v),
v=c*discr.grad(q.u)
)
-
discr.inverse_mass(
discr.face_mass(
wave_flux(actx, discr, c=c,
q_tpair=interior_trace_pair(discr, q))
+ wave_flux(actx, discr, c=c,
q_tpair=TracePair(BTAG_ALL, dir_q, dir_bc))
))
)
# }}}
def rk4_step(y, t, h, f):
k1 = f(t, y)
k2 = f(t+h/2, y + h/2*k1)
k3 = f(t+h/2, y + h/2*k2)
k4 = f(t+h, y + h*k3)
return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
def bump(actx, discr, t=0):
source_center = np.array([0.0, 0.05])
source_width = 0.05
source_omega = 3
nodes = actx.thaw(discr.volume_discr.nodes())
center_dist = flat_obj_array([
nodes[0] - source_center[0],
nodes[1] - source_center[1],
])
return (
np.cos(source_omega*t)
* actx.np.exp(
-np.dot(center_dist, center_dist)
/ source_width**2))
@with_container_arithmetic(bcast_obj_array=True,
rel_comparison=True,
_cls_has_array_context_attr=True)
@dataclass_array_container
@dataclass(frozen=True)
class WaveState:
u: DOFArray
v: np.ndarray # [object]
# NOTE: let the container do the broadcasting + arithmetic
__array_ufunc__ = None
def __post_init__(self):
assert isinstance(self.v, np.ndarray) and self.v.dtype.char == "O"
@property
def array_context(self):
return self.u.array_context
@log_process(logger)
def main(lazy=False):
logging.basicConfig(level=logging.INFO)
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx_outer = PyOpenCLArrayContext(queue)
if lazy:
actx_rhs = PytatoPyOpenCLArrayContext(queue)
else:
actx_rhs = actx_outer
nel_1d = 16
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5, -0.5),
b=(0.5, 0.5),
nelements_per_axis=(nel_1d, nel_1d))
order = 3
# no deep meaning here, just a fudge factor
dt = 0.7/(nel_1d*order**2)
logger.info("%d elements", mesh.nelements)
discr = DGDiscretization(actx_outer, mesh, order=order)
fields = WaveState(
u=bump(actx_outer, discr),
v=make_obj_array([discr.zeros(actx_outer) for i in range(discr.dim)]),
)
from meshmode.discretization.visualization import make_visualizer
vis = make_visualizer(actx_outer, discr.volume_discr)
def rhs(t, q):
return wave_operator(actx_rhs, discr, c=1, q=q)
compiled_rhs = actx_rhs.compile(rhs)
def rhs_wrapper(t, q):
r = compiled_rhs(t, actx_rhs.thaw(actx_outer.freeze(q)))
return actx_outer.thaw(actx_rhs.freeze(r))
t = np.float64(0)
t_final = 3
istep = 0
while t < t_final:
fields = rk4_step(fields, t, dt, rhs_wrapper)
if istep % 10 == 0:
# FIXME: Maybe an integral function to go with the
# DOFArray would be nice?
assert len(fields.u) == 1
logger.info("[%05d] t %.5e / %.5e norm %.5e",
istep, t, t_final, actx_outer.to_numpy(flat_norm(fields.u, 2)))
vis.write_vtk_file("fld-wave-min-%04d.vtu" % istep, [
("q", fields),
])
t += dt
istep += 1
assert flat_norm(fields.u, 2) < 100
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Wave Equation Solver")
parser.add_argument("--lazy", action="store_true",
help="switch to a lazy computation mode")
args = parser.parse_args()
main(lazy=args.lazy)
# vim: foldmethod=marker
__copyright__ = "Copyright (C) 2020 Benjamin Sepanski"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
# Nb: Some of the initial setup was adapted from meshmode/examplse/simple-dg.py
# written by Andreas Klockner:
# https://gitlab.tiker.net/inducer/meshmode/-/blob/7826fa5e13854bf1dae425b4226865acc10ee01f/examples/simple-dg.py # noqa : E501
def main():
# If can't import firedrake, do nothing
#
# filename MUST include "firedrake" (i.e. match *firedrake*.py) in order
# to be run during CI
try:
import firedrake # noqa : F401
except ImportError:
return 0
# For this example, imagine we wish to solve the Laplace equation
# on a meshmode mesh with some given Dirichlet boundary conditions,
# and decide to use firedrake.
#
# To verify this is working, we use a solution to the wave equation
# to get our boundary conditions
# {{{ First we make a discretization in meshmode and get our bcs
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
nel_1d = 16
from meshmode.mesh.generation import generate_regular_rect_mesh
mesh = generate_regular_rect_mesh(
a=(-0.5, -0.5),
b=(0.5, 0.5),
nelements_per_axis=(nel_1d, nel_1d))
order = 3
from meshmode.discretization import Discretization
from meshmode.discretization.poly_element import (
InterpolatoryQuadratureSimplexGroupFactory,
)
group_factory = InterpolatoryQuadratureSimplexGroupFactory(order=order)
discr = Discretization(actx, mesh, group_factory)
# Get our solution: we will use
# Real(e^z) = Real(e^{x+i y})
# = e^x Real(e^{i y})
# = e^x cos(y)
nodes = discr.nodes()
for i in range(len(nodes)):
nodes[i] = actx.thaw(nodes[i])
# First index is dimension
candidate_sol = actx.np.exp(nodes[0]) * actx.np.cos(nodes[1])
# }}}
# {{{ Now send candidate_sol into firedrake and use it for boundary conditions
from meshmode.interop.firedrake import build_connection_to_firedrake
fd_connection = build_connection_to_firedrake(discr, group_nr=0)
# convert candidate_sol to firedrake
fd_candidate_sol = fd_connection.from_meshmode(candidate_sol)
# get the firedrake function space
fd_fspace = fd_connection.firedrake_fspace()
# set up dirichlet laplace problem in fd and solve
from firedrake import (
Constant,
DirichletBC,
Function,
FunctionSpace,
TestFunction,
TrialFunction,
dx,
grad,
inner,
project,
solve,
)
# because it's easier to write down the variational problem,
# we're going to project from our "DG" space
# into a continuous one.
cfd_fspace = FunctionSpace(fd_fspace.mesh(), "CG", order)
u = TrialFunction(cfd_fspace)
v = TestFunction(cfd_fspace)
sol = Function(cfd_fspace)
a = inner(grad(u), grad(v)) * dx
rhs = inner(Constant(0.0), v) * dx
bc_value = project(fd_candidate_sol, cfd_fspace)
bc = DirichletBC(cfd_fspace, bc_value, "on_boundary")
params = {"ksp_monitor": None}
solve(a == rhs, sol, bcs=[bc], solver_parameters=params)
# project back into our "DG" space
sol = project(sol, fd_fspace)
# }}}
# {{{ Take the solution from firedrake and compare it to candidate_sol
true_sol = fd_connection.from_firedrake(sol, actx=actx)
# pull back into numpy
true_sol = actx.to_numpy(true_sol[0])
candidate_sol = actx.to_numpy(candidate_sol[0])
print("l^2 difference between candidate solution and firedrake solution=",
np.linalg.norm(true_sol - candidate_sol))
# }}}
if __name__ == "__main__":
main()
# vim: foldmethod=marker
# Requires numpy-stl
# pip install numpy-stl
import numpy as np
import numpy.linalg as la
import modepy
import pyopencl as cl
import meshmode.discretization.connection as conn
import meshmode.discretization.poly_element as poly
import meshmode.mesh.generation as mgen
from meshmode.array_context import PyOpenCLArrayContext
from meshmode.discretization import Discretization
from meshmode.mesh import BTAG_ALL, make_mesh
def main():
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
actx = PyOpenCLArrayContext(queue)
npts1d = 100 # use 300 for actual print
rs_coords = np.linspace(-1, 1, npts1d)
mesh = mgen.generate_box_mesh((
rs_coords,
rs_coords,
np.linspace(-0.1, 0, 10),
))
group_factory = poly.PolynomialWarpAndBlend2DRestrictingGroupFactory(1)
discr = Discretization(actx, mesh, group_factory)
frestr = conn.make_face_restriction(actx, discr, group_factory, BTAG_ALL)
bdry_mesh = frestr.to_discr.mesh
order = 10
hc_shape = modepy.Hypercube(2)
space = modepy.QN(2, order)
basis = modepy.basis_for_space(space, hc_shape)
from modepy.quadrature.jacobi_gauss import legendre_gauss_lobatto_nodes
nodes_1d, = legendre_gauss_lobatto_nodes(order, force_dim_axis=True)
nodes = modepy.tensor_product_nodes(2, nodes_1d)
vdm_inv = la.inv(modepy.vandermonde(basis.functions, nodes))
vertices = bdry_mesh.vertices
top_surface = np.abs(vertices[2] - 0) < 1e-12
rs = vertices[:2, top_surface]
val = 0*rs[0]
for i, bf in enumerate(basis.functions):
val += 0.5*vdm_inv[i, len(nodes_1d)*4 + 3] * bf(rs)
for i, bf in enumerate(basis.functions):
val += 0.5*vdm_inv[i, len(nodes_1d)*6 + 4] * bf(rs)
for r1d in nodes_1d:
r1d_discrete = rs_coords[np.argmin(np.abs(r1d - rs_coords))]
assert abs(r1d - r1d_discrete) < 2/npts1d
dimple = np.zeros_like(val)
at_node_r = np.abs(rs[0] - r1d_discrete) < 1e-12
dimple[at_node_r] = 1
at_node_s = np.abs(rs[1] - r1d_discrete) < 1e-12
dimple[at_node_s] = 1
val -= 0.005 * dimple
vertices[2, top_surface] = 0.1+val
grp, = bdry_mesh.groups
from meshmode.mesh.generation import make_group_from_vertices
mod_grp = make_group_from_vertices(vertices, grp.vertex_indices, order=grp.order)
mod_mesh = make_mesh(
vertices=vertices, groups=[mod_grp],
is_conforming=bdry_mesh.is_conforming)
from meshmode.mesh.visualization import write_stl_file
write_stl_file(mod_mesh, "tp-lagrange.stl")
if __name__ == "__main__":
main()
# vim: foldmethod=marker
from __future__ import division
__copyright__ = "Copyright (C) 2014 Andreas Kloeckner"
__license__ = """
......@@ -24,14 +22,67 @@ THE SOFTWARE.
__doc__ = """
.. exception:: Error
.. exception:: DataUnavailable
.. autoexception:: Error
.. autoexception:: DataUnavailableError
.. autoexception:: InconsistentMeshError
.. autoexception:: InconsistentArrayDTypeError
.. autoexception:: InconsistentVerticesError
.. autoexception:: InconsistentAdjacencyError
"""
from builtins import FileExistsError # noqa: F401
from meshmode.mesh.tools import AffineMap # noqa: F401
class Error(RuntimeError):
pass
"""Exception base for :mod:`meshmode` errors."""
class DataUnavailableError(Error):
"""Raised when some data on the mesh or the discretization is not available.
This error should not be raised when the specific data simply fails to be
computed for other reasons.
"""
DataUnavailable = DataUnavailableError
class InconsistentMeshError(Error):
"""Raised when the mesh is inconsistent in some fashion.
Prefer the more specific exceptions, e.g. :exc:`InconsistentVerticesError`
when possible.
"""
class InconsistentArrayDTypeError(InconsistentMeshError):
"""Raised when a mesh (or group) array does not match the provided
:class:`~numpy.dtype`.
"""
class InconsistentVerticesError(InconsistentMeshError):
"""Raised when an element's local-to-global mapping does not map the unit
vertices to the corresponding values in the mesh's *vertices* array.
"""
class InconsistentAdjacencyError(InconsistentMeshError):
"""Raised when the nodal or the facial adjacency is inconsistent."""
def _acf():
"""A tiny undocumented function to pass to tests that take an ``actx_factory``
argument when running them from the command line.
"""
import pyopencl as cl
from meshmode.array_context import PyOpenCLArrayContext
class DataUnavailable(Error):
pass
context = cl._csc()
queue = cl.CommandQueue(context)
return PyOpenCLArrayContext(queue)
"""
.. autoclass:: PyOpenCLArrayContext
.. autoclass:: PytatoPyOpenCLArrayContext
"""
__copyright__ = "Copyright (C) 2020 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from warnings import warn
from arraycontext import (
PyOpenCLArrayContext as PyOpenCLArrayContextBase,
PytatoPyOpenCLArrayContext as PytatoPyOpenCLArrayContextBase,
)
from arraycontext.pytest import (
_PytestPyOpenCLArrayContextFactoryWithClass,
_PytestPytatoPyOpenCLArrayContextFactory,
register_pytest_array_context_factory,
)
def thaw(actx, ary):
warn("meshmode.array_context.thaw is deprecated. Use arraycontext.thaw instead. "
"WARNING: The argument order is reversed between these two functions. "
"meshmode.array_context.thaw will continue to work until 2022.",
DeprecationWarning, stacklevel=2)
return actx.thaw(ary)
# {{{ kernel transform function
def _transform_loopy_inner(t_unit):
import loopy as lp
from arraycontext.transform_metadata import ElementwiseMapKernelTag
from pymbolic.primitives import Subscript, Variable
from meshmode.transform_metadata import FirstAxisIsElementsTag
default_ep = t_unit.default_entrypoint
# FIXME: Firedrake branch lacks kernel tags
kernel_tags = getattr(default_ep, "tags", ())
# {{{ FirstAxisIsElementsTag on kernel (compatibility)
if any(isinstance(tag, FirstAxisIsElementsTag) for tag in kernel_tags):
if (len(default_ep.instructions) != 1
or not isinstance(
default_ep.instructions[0], lp.Assignment)):
raise ValueError("FirstAxisIsElementsTag may only be applied to "
"a kernel if the kernel contains a single assignment.")
stmt, = default_ep.instructions
if not isinstance(stmt.assignee, Subscript):
raise ValueError("single assignment in FirstAxisIsElementsTag kernel "
"must be a subscript")
output_name = stmt.assignee.aggregate.name
new_args = [
arg.tagged(FirstAxisIsElementsTag())
if arg.name == output_name else arg
for arg in default_ep.args]
default_ep = default_ep.copy(args=new_args)
t_unit = t_unit.with_kernel(default_ep)
# }}}
# {{{ ElementwiseMapKernelTag on kernel
if any(isinstance(tag, ElementwiseMapKernelTag) for tag in kernel_tags):
el_inames = []
dof_inames = []
for stmt in default_ep.instructions:
if isinstance(stmt, lp.MultiAssignmentBase):
for assignee in stmt.assignees:
if isinstance(assignee, Variable):
# some scalar assignee kernel => no concurrency in the
# workload => skip
continue
if not isinstance(assignee, Subscript):
raise ValueError("assignees in "
"ElementwiseMapKernelTag-tagged kernels must be "
"subscripts")
for i, subscript in enumerate(assignee.index_tuple[:2]):
if (not isinstance(subscript, Variable)
or subscript.name not in default_ep.all_inames()):
raise ValueError("subscripts in "
"ElementwiseMapKernelTag-tagged kernels must be "
"inames")
if i == 0:
el_inames.append(subscript.name)
elif i == 1:
dof_inames.append(subscript.name)
return _transform_with_element_and_dof_inames(t_unit, el_inames, dof_inames)
# }}}
# {{{ FirstAxisIsElementsTag on output variable
first_axis_el_args = [arg.name for arg in default_ep.args
if any(isinstance(tag, FirstAxisIsElementsTag) for tag in arg.tags)]
if first_axis_el_args:
el_inames = []
dof_inames = []
for stmt in default_ep.instructions:
if isinstance(stmt, lp.MultiAssignmentBase):
for assignee in stmt.assignees:
if not isinstance(assignee, Subscript):
raise ValueError("assignees in "
"FirstAxisIsElementsTag-tagged kernels must be "
"subscripts")
if assignee.aggregate.name not in first_axis_el_args:
continue
subscripts = assignee.index_tuple[:2]
for i, subscript in enumerate(subscripts):
if (not isinstance(subscript, Variable)
or subscript.name not in default_ep.all_inames()):
raise ValueError("subscripts in "
"FirstAxisIsElementsTag-tagged kernels must be "
"inames")
if i == 0:
el_inames.append(subscript.name)
elif i == 1:
dof_inames.append(subscript.name)
return _transform_with_element_and_dof_inames(t_unit, el_inames, dof_inames)
# }}}
# {{{ element/dof iname tag
from meshmode.transform_metadata import (
ConcurrentDOFInameTag,
ConcurrentElementInameTag,
)
el_inames = [iname.name
for iname in default_ep.inames.values()
if ConcurrentElementInameTag() in iname.tags]
dof_inames = [iname.name
for iname in default_ep.inames.values()
if ConcurrentDOFInameTag() in iname.tags]
if el_inames:
return _transform_with_element_and_dof_inames(t_unit, el_inames, dof_inames)
# }}}
# *shrug* no idea how to transform this thing.
return None
def _transform_with_element_and_dof_inames(t_unit, el_inames, dof_inames):
import loopy as lp
if set(el_inames) & set(dof_inames):
raise ValueError("Some inames are marked as both 'element' and 'dof' "
"inames. These must be disjoint.")
# Sorting ensures the same order of transformations is used every
# time; avoids accidentally generating cache misses or kernel
# hash conflicts.
for dof_iname in sorted(dof_inames):
t_unit = lp.split_iname(t_unit, dof_iname, 32, inner_tag="l.0")
for el_iname in sorted(el_inames):
t_unit = lp.tag_inames(t_unit, {el_iname: "g.0"})
return t_unit
# }}}
# {{{ pyopencl array context subclass
class PyOpenCLArrayContext(PyOpenCLArrayContextBase):
"""Extends :class:`arraycontext.PyOpenCLArrayContext` with knowledge about
program transformation for finite element programs.
See :mod:`meshmode.transform_metadata` for relevant metadata.
"""
def transform_loopy_program(self, t_unit):
default_ep = t_unit.default_entrypoint
options = default_ep.options
if not (options.return_dict and options.no_numpy):
raise ValueError("Loopy kernel passed to call_loopy must "
"have return_dict and no_numpy options set. "
"Did you use arraycontext.make_loopy_program "
"to create this kernel?")
transformed_t_unit = _transform_loopy_inner(t_unit)
if transformed_t_unit is not None:
return transformed_t_unit
warn("meshmode.array_context.PyOpenCLArrayContext."
"transform_loopy_program fell back on "
"arraycontext.PyOpenCLArrayContext to find a transform for "
f"'{default_ep.name}'. "
"Please update your program to use metadata from "
"meshmode.transform_metadata. "
"This code path will stop working in 2022.",
DeprecationWarning, stacklevel=3)
return super().transform_loopy_program(t_unit)
# }}}
# {{{ pytato pyopencl array context subclass
class PytatoPyOpenCLArrayContext(PytatoPyOpenCLArrayContextBase):
def transform_dag(self, dag):
dag = super().transform_dag(dag)
# {{{ /!\ Remove tags from NamedArrays
# See <https://www.github.com/inducer/pytato/issues/195>
import pytato as pt
def untag_loopy_call_results(expr):
if isinstance(expr, pt.NamedArray):
return expr.copy(tags=frozenset(),
axes=(pt.Axis(frozenset()),)*expr.ndim)
else:
return expr
dag = pt.transform.map_and_copy(dag, untag_loopy_call_results)
# }}}
return dag
def transform_loopy_program(self, t_unit):
# FIXME: Do not parallelize for now.
return t_unit
# }}}
# {{{ pytest actx factory
class PytestPyOpenCLArrayContextFactory(
_PytestPyOpenCLArrayContextFactoryWithClass):
actx_class = PyOpenCLArrayContext
class PytestPytatoPyOpenCLArrayContextFactory(
_PytestPytatoPyOpenCLArrayContextFactory):
@property
def actx_class(self):
return PytatoPyOpenCLArrayContext
register_pytest_array_context_factory("meshmode.pyopencl",
PytestPyOpenCLArrayContextFactory)
register_pytest_array_context_factory("meshmode.pytato_cl",
PytestPytatoPyOpenCLArrayContextFactory)
# }}}
# {{{ handle move deprecation
_actx_names = (
"ArrayContext",
"CommonSubexpressionTag",
"FirstAxisIsElementsTag",
"ArrayContainer",
"is_array_container", "is_array_container_type",
"serialize_container", "deserialize_container",
"get_container_context", "get_container_context_recursively",
"with_container_arithmetic",
"dataclass_array_container",
"map_array_container", "multimap_array_container",
"rec_map_array_container", "rec_multimap_array_container",
"mapped_over_array_containers",
"multimapped_over_array_containers",
"freeze",
"make_loopy_program",
"pytest_generate_tests_for_pyopencl_array_context"
)
def __getattr__(name):
if name not in _actx_names:
raise AttributeError(name)
import arraycontext
result = getattr(arraycontext, name)
warn(f"meshmode.array_context.{name} is deprecated. "
f"Use arraycontext.{name} instead. "
f"meshmode.array_context.{name} will continue to work until 2022.",
DeprecationWarning, stacklevel=2)
return result
# }}}
# vim: foldmethod=marker
This diff is collapsed.
__copyright__ = """Copyright (C) 2018 Alexandru Fikl"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from dataclasses import dataclass
import numpy as np
import modepy as mp
from meshmode.discretization.connection.direct import DiscretizationConnection
# {{{ chained discretization connection
class ChainedDiscretizationConnection(DiscretizationConnection):
"""Aggregates multiple :class:`DiscretizationConnection` instances
into a single one.
.. attribute:: connections
"""
def __init__(self, connections, from_discr=None):
if connections:
if from_discr is not None:
assert from_discr is connections[0].from_discr
else:
from_discr = connections[0].from_discr
is_surjective = all(cnx.is_surjective for cnx in connections)
to_discr = connections[-1].to_discr
else:
if from_discr is None:
raise ValueError("connections may not be empty if from_discr "
"is not specified")
to_discr = from_discr
# It's an identity
is_surjective = True
super().__init__(
from_discr, to_discr, is_surjective=is_surjective)
self.connections = connections
def __call__(self, ary):
for cnx in self.connections:
ary = cnx(ary)
return ary
# }}}
# {{{ flatten chained connection
@dataclass(frozen=True)
class _ConnectionBatchData:
result_unit_nodes: np.ndarray
from_group_index: int
to_element_face: int
def _iterbatches(groups):
for igrp, grp in enumerate(groups):
for ibatch, batch in enumerate(grp.batches):
yield (igrp, ibatch), (grp, batch)
def _build_element_lookup_table(actx, conn):
el_table = [np.full(g.nelements, -1, dtype=np.int64)
for g in conn.to_discr.groups]
for (igrp, _), (_, batch) in _iterbatches(conn.groups):
el_table[igrp][actx.to_numpy(batch.to_element_indices)] = \
actx.to_numpy(batch.from_element_indices)
return el_table
def _build_new_group_table(from_conn, to_conn):
def find_batch(nodes, gtb):
for igrp, batches in enumerate(gtb):
for ibatch, batch in enumerate(batches):
if np.allclose(nodes, batch.result_unit_nodes):
return (igrp, ibatch)
return (-1, -1)
nfrom_groups = len(from_conn.groups)
n_to_groups = len(to_conn.groups)
# construct a table from (old groups) -> (new groups)
# NOTE: we try to reduce the number of new groups and batches by matching
# the `result_unit_nodes` and only adding a new batch if necessary
grp_to_grp = {}
batch_info = [[] for i in range(nfrom_groups * n_to_groups)]
for (igrp, ibatch), (_, fbatch) in _iterbatches(from_conn.groups):
for (jgrp, jbatch), (_, tbatch) in _iterbatches(to_conn.groups):
# compute result_unit_nodes
ffgrp = from_conn.from_discr.groups[fbatch.from_group_index]
from_matrix = mp.resampling_matrix(
ffgrp.basis_obj().functions,
fbatch.result_unit_nodes,
ffgrp.unit_nodes)
result_unit_nodes = from_matrix.dot(ffgrp.unit_nodes.T)
tfgrp = to_conn.from_discr.groups[tbatch.from_group_index]
to_matrix = mp.resampling_matrix(
tfgrp.basis_obj().functions,
tbatch.result_unit_nodes,
tfgrp.unit_nodes)
result_unit_nodes = to_matrix.dot(result_unit_nodes).T
# find new (group, batch)
(igrp_new, ibatch_new) = find_batch(result_unit_nodes, batch_info)
if igrp_new < 0:
igrp_new = n_to_groups * igrp + jgrp
ibatch_new = len(batch_info[igrp_new])
batch_info[igrp_new].append(_ConnectionBatchData(
from_group_index=fbatch.from_group_index,
result_unit_nodes=result_unit_nodes,
to_element_face=tbatch.to_element_face))
grp_to_grp[igrp, ibatch, jgrp, jbatch] = (igrp_new, ibatch_new)
return grp_to_grp, batch_info
def _build_batches(actx, from_bins, to_bins, batch):
from meshmode.discretization.connection.direct import InterpolationBatch
def to_device(x):
return actx.freeze(actx.from_numpy(np.asarray(x)))
for ibatch, (from_bin, to_bin) in enumerate(zip(from_bins, to_bins, strict=True)):
yield InterpolationBatch(
from_group_index=batch[ibatch].from_group_index,
from_element_indices=to_device(from_bin),
to_element_indices=to_device(to_bin),
result_unit_nodes=batch[ibatch].result_unit_nodes,
to_element_face=batch[ibatch].to_element_face)
def flatten_chained_connection(actx, connection):
"""Collapse a connection into a direct connection.
If the given connection is already a
:class:`~meshmode.discretization.connection.DirectDiscretizationConnection`
nothing is done. However, if the connection is a
:class:`~meshmode.discretization.connection.ChainedDiscretizationConnection`,
a new direct connection is constructed that transports from
:attr:`~meshmode.discretization.connection.DiscretizationConnection.from_discr`
to
:attr:`~meshmode.discretization.connection.DiscretizationConnection.to_discr`.
The new direct connection will have a number of groups and batches that
is, at worse, the product of all the connections in the chain. For
example, if we consider a connection between a discretization and a
two-level refinement, both levels will have :math:`n` groups and
:math:`m + 1` batches per group, where :math:`m` is the number of
subdivisions of an element (exact number depends on implementation
details in
:func:`~meshmode.discretization.connection.make_refinement_connection`).
However, a direct connection from level :math:`0` to level :math:`2`
will have at worst :math:`n^2` groups and each group will have
:math:`(m + 1)^2` batches.
.. warning::
If a large number of connections is chained, the number of groups and
batches can become very large.
:arg actx: An instance of :class:`arraycontext.ArrayContext`.
:arg connection: An instance of
:class:`~meshmode.discretization.connection.DiscretizationConnection`.
:return: An instance of
:class:`~meshmode.discretization.connection.DirectDiscretizationConnection`.
"""
from meshmode.discretization.connection import (
DirectDiscretizationConnection,
DiscretizationConnectionElementGroup,
IdentityDiscretizationConnection,
make_same_mesh_connection,
)
if not hasattr(connection, "connections"):
return connection
if not connection.connections:
assert connection.to_discr is connection.from_discr
return make_same_mesh_connection(actx, connection.to_discr,
connection.from_discr)
# recursively build direct connections
connections = connection.connections
direct_connections = []
for conn in connections:
direct_connections.append(flatten_chained_connection(actx, conn))
direct_connections = [conn for conn in direct_connections
if not isinstance(conn, IdentityDiscretizationConnection)]
# merge all the direct connections
from_conn = direct_connections[0]
for to_conn in direct_connections[1:]:
el_table = _build_element_lookup_table(actx, from_conn)
grp_to_grp, batch_info = _build_new_group_table(from_conn, to_conn)
# distribute the indices to new groups and batches
from_bins = [[np.empty(0, dtype=np.int64) for _ in g] for g in batch_info]
to_bins = [[np.empty(0, dtype=np.int64) for _ in g] for g in batch_info]
for (igrp, ibatch), (_, from_batch) in _iterbatches(from_conn.groups):
from_to_element_indices = actx.to_numpy(from_batch.to_element_indices)
for (jgrp, jbatch), (_, to_batch) in _iterbatches(to_conn.groups):
igrp_new, ibatch_new = grp_to_grp[igrp, ibatch, jgrp, jbatch]
jfrom = actx.to_numpy(to_batch.from_element_indices)
jto = actx.to_numpy(to_batch.to_element_indices)
mask = np.isin(jfrom, from_to_element_indices)
from_bins[igrp_new][ibatch_new] = \
np.hstack([from_bins[igrp_new][ibatch_new],
el_table[igrp][jfrom[mask]]])
to_bins[igrp_new][ibatch_new] = \
np.hstack([to_bins[igrp_new][ibatch_new],
jto[mask]])
# build new groups
groups = []
for igrp, (from_bin, to_bin) in enumerate(zip(from_bins, to_bins, strict=True)):
groups.append(DiscretizationConnectionElementGroup(
list(_build_batches(actx, from_bin, to_bin,
batch_info[igrp]))))
from_conn = DirectDiscretizationConnection(
from_discr=from_conn.from_discr,
to_discr=to_conn.to_discr,
groups=groups,
is_surjective=connection.is_surjective)
return from_conn
# }}}
# {{{ build chained resample matrix
def make_full_resample_matrix(actx, connection):
"""Build a dense matrix representing the discretization connection.
This is based on
:func:`~meshmode.discretization.connection.direct.make_direct_full_resample_matrix`.
If a chained connection is given, the matrix is constructed recursively
for each connection and multiplied left to right.
.. warning::
This method will be very slow, both in terms of speed and memory
usage, and should only be used for testing or if absolutely necessary.
:arg actx: a :class:`arraycontext.ArrayContext`.
:arg connection: a
:class:`~meshmode.discretization.connection.DiscretizationConnection`.
:return: a :class:`pyopencl.array.Array` of shape
`(connection.from_discr.ndofs, connection.to_discr.ndofs)`.
"""
from meshmode.discretization.connection.direct import (
DirectDiscretizationConnection,
make_direct_full_resample_matrix,
)
if isinstance(connection, DirectDiscretizationConnection):
return make_direct_full_resample_matrix(actx, connection)
if not isinstance(connection, ChainedDiscretizationConnection):
raise TypeError("only 'ChainedDiscretizationConnection's are supported")
if not connection.connections:
result = np.eye(connection.to_discr.ndofs)
return actx.from_numpy(result)
acc = actx.to_numpy(
make_full_resample_matrix(actx, connection.connections[0]))
for conn in connection.connections[1:]:
resampler = actx.to_numpy(make_full_resample_matrix(actx, conn))
acc = resampler @ acc
return actx.from_numpy(acc)
# }}}
# vim: foldmethod=marker
This diff is collapsed.
This diff is collapsed.