import numpy as np from constantdict import constantdict import loopy as lp # {{{ test_barrier_in_overridden_get_grid_size_expanded_kernel class GridOverride: def __init__(self, clean, vecsize): self.clean = clean self.vecsize = vecsize def __call__(self, insn_ids, callables_table, ignore_auto=True): gsize, _ = self.clean.get_grid_sizes_for_insn_ids(insn_ids, callables_table, ignore_auto) return gsize, (self.vecsize,) # }}} # {{{ test_register_function_lookup class Log2Callable(lp.ScalarCallable): def with_types(self, arg_id_to_dtype, callables_table): if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None: # the types provided aren't mature enough to specialize the # callable return ( self.copy(arg_id_to_dtype=constantdict(arg_id_to_dtype)), callables_table) dtype = arg_id_to_dtype[0].numpy_dtype if dtype.kind in ("u", "i"): # ints and unsigned casted to float32 dtype = np.float32 if dtype.type == np.float32: name_in_target = "log2f" elif dtype.type == np.float64: name_in_target = "log2" pass else: raise TypeError(f"log2: unexpected type {dtype}") from loopy.types import NumpyType return ( self.copy(name_in_target=name_in_target, arg_id_to_dtype=constantdict({ 0: NumpyType(dtype), -1: NumpyType(dtype) })), callables_table) # }}} # vim: foldmethod=marker