__copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import sys import numpy as np import pytest import pyopencl as cl import pyopencl.clmath import pyopencl.clrandom import pyopencl.version from pyopencl.tools import ( # noqa: F401 pytest_generate_tests_for_pyopencl as pytest_generate_tests, ) import loopy as lp from loopy.version import LOOPY_USE_LANGUAGE_VERSION_2018_2 # noqa: F401 logger = logging.getLogger(__name__) def test_nonsense_reduction(ctx_factory): knl = lp.make_kernel( "{[i]: 0<=i<100}", """ a[i] = sum(i, 2) """, [lp.GlobalArg("a", np.float32, shape=(100,))] ) import pytest with pytest.raises(RuntimeError): knl = lp.preprocess_kernel(knl) def test_empty_reduction(ctx_factory): ctx = ctx_factory() queue = cl.CommandQueue(ctx) knl = lp.make_kernel( [ "{[i]: 0<=i<20}", "[i] -> {[j]: 0<=j<0}" ], "a[i] = sum(j, j)", ) knl = lp.preprocess_kernel(knl) print(knl) knl = lp.set_options(knl, write_code=True) _evt, (a,) = knl(queue) assert (a.get() == 0).all() def test_nested_dependent_reduction(ctx_factory): dtype = np.dtype(np.int32) ctx = ctx_factory() queue = cl.CommandQueue(ctx) knl = lp.make_kernel( [ "{[i]: 0<=i sumlen = ell[i]", "a[i] = sum(j, j)", ], [ lp.ValueArg("n", np.int32), lp.GlobalArg("a", dtype, ("n",)), lp.GlobalArg("ell", np.int32, ("n",)), ]) n = 330 ell = np.arange(n, dtype=np.int32) _evt, (a,) = knl(queue, ell=ell, n=n, out_host=True) tgt_result = (2*ell-1)*2*ell/2 assert (a == tgt_result).all() def test_multi_nested_dependent_reduction(): dtype = np.dtype(np.int32) knl = lp.make_kernel( [ "{[itgt]: 0 <= itgt < ntgts}", "{[isrc_box]: 0 <= isrc_box < nboxes}", "{[isrc]: 0 <= isrc < npart}" ], """ for itgt for isrc_box <> npart = nparticles_per_box[isrc_box] end a[itgt] = sum((isrc_box, isrc), 1) end """, [ lp.ValueArg("n", np.int32), lp.GlobalArg("a", dtype, ("n",)), lp.GlobalArg("nparticles_per_box", np.int32, ("nboxes",)), lp.ValueArg("ntgts", np.int32), lp.ValueArg("nboxes", np.int32), ], assumptions="ntgts>=1", target=lp.PyOpenCLTarget()) print(lp.generate_code_v2(knl).device_code()) # FIXME: Actually test functionality. def test_recursive_nested_dependent_reduction(): dtype = np.dtype(np.int32) knl = lp.make_kernel( [ "{[itgt]: 0 <= itgt < ntgts}", "{[isrc_box]: 0 <= isrc_box < nboxes}", "{[isrc]: 0 <= isrc < npart}" ], """ for itgt for isrc_box <> npart = nparticles_per_box[isrc_box] <> boxsum = sum(isrc, isrc+isrc_box+itgt) end a[itgt] = sum(isrc_box, boxsum) end """, [ lp.ValueArg("n", np.int32), lp.GlobalArg("a", dtype, ("n",)), lp.GlobalArg("nparticles_per_box", np.int32, ("nboxes",)), lp.ValueArg("ntgts", np.int32), lp.ValueArg("nboxes", np.int32), ], assumptions="ntgts>=1", target=lp.PyOpenCLTarget()) print(lp.generate_code_v2(knl).device_code()) # FIXME: Actually test functionality. @pytest.mark.parametrize("size", [128, 5, 113, 67, 1]) def test_local_parallel_reduction(ctx_factory, size): ctx = ctx_factory() knl = lp.make_kernel( "{[i, j]: 0 <= i < n and 0 <= j < 5}", """ z[j] = sum(i, i+j) """) knl = lp.fix_parameters(knl, n=size) ref_knl = knl def variant0(knl): return lp.tag_inames(knl, "i:l.0") def variant1(knl): return lp.tag_inames(knl, "i:l.0,j:l.1") def variant2(knl): return lp.tag_inames(knl, "i:l.0,j:g.0") for variant in [ variant0, variant1, variant2 ]: knl = variant(ref_knl) lp.auto_test_vs_ref(ref_knl, ctx, knl) @pytest.mark.parametrize("size", [1000]) def test_global_parallel_reduction(ctx_factory, size): ctx = ctx_factory() knl = lp.make_kernel( "{[i]: 0 <= i < n }", """ # Using z[0] instead of z works around a bug in ancient PyOpenCL. z[0] = sum(i, a[i]) """) knl = lp.add_and_infer_dtypes(knl, {"a": np.float32}) ref_knl = knl gsize = 128 knl = lp.split_iname(knl, "i", gsize * 20) knl = lp.split_iname(knl, "i_inner", gsize, inner_tag="l.0") knl = lp.split_reduction_outward(knl, "i_outer") knl = lp.split_reduction_inward(knl, "i_inner_outer") from loopy.transform.data import reduction_arg_to_subst_rule knl = reduction_arg_to_subst_rule(knl, "i_outer") knl = lp.precompute(knl, "red_i_outer_arg", "i_outer", temporary_address_space=lp.AddressSpace.GLOBAL, default_tag="l.auto") knl = lp.realize_reduction(knl) knl = lp.tag_inames(knl, "i_outer_0:g.0") # Keep the i_outer accumulator on the correct (lower) side of the barrier, # otherwise there will be useless save/reload code generated. knl = lp.add_dependency( knl, "writes:acc_i_outer", "id:red_i_outer_arg_barrier") lp.auto_test_vs_ref( ref_knl, ctx, knl, parameters={"n": size}, print_ref_code=True) @pytest.mark.parametrize("size", [1000]) def test_global_mc_parallel_reduction(ctx_factory, size): ctx = ctx_factory() if cl.version.VERSION < (2016, 2): pytest.skip("Random123 RNG not supported in PyOpenCL < 2016.2") knl = lp.make_kernel( "{[i]: 0 <= i < n }", """ for i <> key = make_uint2(i, 324830944) {inames=i} <> ctr = make_uint4(0, 1, 2, 3) {inames=i,id=init_ctr} <> vals, ctr = philox4x32_f32(ctr, key) {dep=init_ctr} end z = sum(i, vals.s0 + vals.s1 + vals.s2 + vals.s3) """) ref_knl = knl ref_knl = lp.add_dtypes(ref_knl, {"n": np.int32}) gsize = 128 knl = lp.split_iname(knl, "i", gsize * 20) knl = lp.split_iname(knl, "i_inner", gsize, outer_tag="l.0") knl = lp.split_reduction_inward(knl, "i_inner_inner") knl = lp.split_reduction_inward(knl, "i_inner_outer") from loopy.transform.data import reduction_arg_to_subst_rule knl = reduction_arg_to_subst_rule(knl, "i_outer") knl = lp.precompute(knl, "red_i_outer_arg", "i_outer", temporary_address_space=lp.AddressSpace.GLOBAL, default_tag="l.auto") knl = lp.preprocess_kernel(knl) knl = lp.add_dependency( knl, "writes:acc_i_outer", "id:red_i_outer_arg_barrier") lp.auto_test_vs_ref( ref_knl, ctx, knl, parameters={"n": size}) def test_argmax(ctx_factory): ctx = ctx_factory() queue = cl.CommandQueue(ctx) rng = np.random.default_rng(seed=42) n = 10000 knl = lp.make_kernel( "{[i]: 0<=i<%d}" % n, """ max_val, max_idx = argmax(i, abs(a[i]), i) """) knl = lp.add_and_infer_dtypes(knl, {"a": np.float32}) print(lp.preprocess_kernel(knl)) knl = lp.set_options(knl, write_code=True, allow_terminal_colors=True) a = rng.normal(size=10000).astype(np.float32) _evt, (max_idx, max_val) = knl(queue, a=a, out_host=True) assert max_val == np.max(np.abs(a)) assert max_idx == np.where(np.abs(a) == max_val)[-1] def test_simul_reduce(ctx_factory): ctx = ctx_factory() queue = cl.CommandQueue(ctx) n = 20 knl = lp.make_kernel( "{[i,j]: 0<=i,j 0 b[l] = sum(i, l*a[i]) end """, [lp.ValueArg("n", dtype=np.int32), "..."]) knl = lp.tag_inames(knl, "l:g.0") knl = lp.add_and_infer_dtypes(knl, {"a": np.float32}) code = lp.generate_code_v2(knl).device_code() print(code) # Check that the if appears before the loop that realizes the reduction. assert code.index("if") < code.index("for") def test_any_all(ctx_factory): ctx = ctx_factory() cq = cl.CommandQueue(ctx) knl = lp.make_kernel( "{[i, j]: 0<=i,j<10}", """ out1 = reduce(any, [i], i == 4) out2 = reduce(all, [j], j == 5) """) knl = lp.set_options(knl, return_dict=True) _, out_dict = knl(cq) assert out_dict["out1"].get() assert not out_dict["out2"].get() def test_reduction_without_inames(ctx_factory): """Ensure that reductions with no inames get rewritten to the element being reduced over. This was sometimes erroneously eliminated because reduction realization used the generation of new statements as a criterion for whether work was done. """ ctx = ctx_factory() cq = cl.CommandQueue(ctx) knl = lp.make_kernel( "{:}", """ out = reduce(any, [], 5) """) knl = lp.set_options(knl, return_dict=True) _, out_dict = knl(cq) assert out_dict["out"].get() == 5 def test_reduction_in_conditional(ctx_factory): # https://github.com/inducer/loopy/issues/533#issuecomment-1028472366 ctx = ctx_factory() cq = cl.CommandQueue(ctx) knl = lp.make_kernel( "{[i, j, k]: 0<=i,j,k<10}", """ y[i] = 1729 if (sum(j, j) == 0) else sum(k, k) """) knl = lp.set_options(knl, write_code=True) knl = lp.preprocess_program(knl) _evt, (out,) = knl(cq) assert (out == 45).all() def test_realize_reduction_insn_id_filter_list(ctx_factory): ctx = ctx_factory() t_unit = lp.make_kernel( "{[i, j, k]: 0<=i,j,k<10}", """ a = sum(i, 8*i) {id=w_a} b = sum(j, j*j) {id=w_b} c = sum(k, sin(3.14*k)) {id=w_c} """) ref_t_unit = t_unit knl = t_unit.default_entrypoint assert knl.id_to_insn["w_a"].reduction_inames() == frozenset({"i"}) assert knl.id_to_insn["w_b"].reduction_inames() == frozenset({"j"}) assert knl.id_to_insn["w_c"].reduction_inames() == frozenset({"k"}) t_unit = lp.realize_reduction(t_unit, insn_id_filter=["w_a", "w_b"]) knl = t_unit.default_entrypoint assert knl.id_to_insn["w_a"].reduction_inames() == frozenset() assert knl.id_to_insn["w_b"].reduction_inames() == frozenset() assert knl.id_to_insn["w_c"].reduction_inames() == frozenset({"k"}) lp.auto_test_vs_ref(t_unit, ctx, ref_t_unit) if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: foldmethod=marker