Boxtree code exercises possible regression in loopy
Based on boxtree/tools.py
:
import loopy as lp
def get_2d_knl(context, dtype):
knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"""
<> phi = 2*M_PI/n * i
x[i] = 0.5* (3*cos(phi) + 2*sin(3*phi))
y[i] = 0.5* (1*sin(phi) + 1.5*sin(2*phi))
""", [
lp.GlobalArg("x,y", dtype, shape=lp.auto),
lp.ValueArg("n", np.int32),])
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0", inner_tag="l.0")
return lp.CompiledKernel(context, knl)
import pyopencl as cl
import numpy as np
queue = cl.CommandQueue(cl._csc())
evt, result = get_2d_knl(queue.context, np.float)(queue, n=15)
I get the error:
evt, result = get_2d_knl(queue.context, np.float)(queue, n=15)
File "/home/wala1/src/loopy/loopy/compiled.py", line 891, in __call__
out_host, **kwargs)
File "<generated function invoke_loopy_kernel_loopy_kernel>", line 160, in invoke_loopy_kernel_loopy_kernel
File "<generated function invoke_loopy_kernel_loopy_kernel>", line 36, in _lpy_host_loopy_kernel
File "/home/wala1/src/pyopencl/pyopencl/cffi_cl.py", line 1867, in set_arg
self._set_arg_clkernelarg(self, arg_index, arg)
TypeError: _set_arg_clkernelarg() takes 3 positional arguments but 4 were given
@inducer, the above code was working a few days ago. Should recent changes have broken this?