diff --git a/loopy/statistics.py b/loopy/statistics.py index e9fcdb2dc685cecea26e5df5deeda99bdc7b17af..af2dcce297642be58a95dd159127ad4dce411965 100755 --- a/loopy/statistics.py +++ b/loopy/statistics.py @@ -418,20 +418,14 @@ def get_op_poly(knl): Example usage:: - # first create loopy kernel and specify array data types + # (first create loopy kernel and specify array data types) poly = get_op_poly(knl) + params = {'n': 512, 'm': 256, 'l': 128} + float32_op_ct = poly.dict[np.dtype(np.float32)].eval_with_dict(params) + float64_op_ct = poly.dict[np.dtype(np.float64)].eval_with_dict(params) - n = 512 - m = 256 - l = 128 - - float32_op_ct = poly.dict[np.dtype(np.float32)].eval_with_dict( - {'n': n, 'm': m, 'l': l}) - float64_op_ct = poly.dict[np.dtype(np.float64)].eval_with_dict( - {'n': n, 'm': m, 'l': l}) - - # now use these counts to predict performance + # (now use these counts to predict performance) """ @@ -478,21 +472,22 @@ def get_DRAM_access_poly(knl): # for now just counting subscripts Example usage:: - # first create loopy kernel and specify array data types + # (first create loopy kernel and specify array data types) subscript_map = get_DRAM_access_poly(knl) + params = {'n': 512, 'm': 256, 'l': 128} f32_uncoalesced_load = subscript_map.dict[ (np.dtype(np.float32), 'nonconsecutive', 'load') - ].eval_with_dict({'n': n, 'm': m, 'l': l}) + ].eval_with_dict(params) f32_coalesced_load = subscript_map.dict[ (np.dtype(np.float32), 'consecutive', 'load') - ].eval_with_dict({'n': n, 'm': m, 'l': l}) + ].eval_with_dict(params) f32_coalesced_store = subscript_map.dict[ (np.dtype(np.float32), 'consecutive', 'store') - ].eval_with_dict({'n': n, 'm': m, 'l': l}) + ].eval_with_dict(params) - # now use these counts to predict performance + # (now use these counts to predict performance) """ @@ -532,17 +527,13 @@ def get_barrier_poly(knl): Example usage:: - # first create loopy kernel and specify array data types + # (first create loopy kernel and specify array data types) barrier_poly = get_barrier_poly(knl) + params = {'n': 512, 'm': 256, 'l': 128} + barrier_count = barrier_poly.eval_with_dict(params) - n = 512 - m = 256 - l = 128 - - barrier_count = barrier_poly.eval_with_dict({'n': n, 'm': m, 'l': l}) - - # now use this count to predict performance + # (now use this count to predict performance) """