diff --git a/MEMO b/MEMO
index b5ab32e625ca5c6e282c93b931e9cab2af6b2289..ac53d89d97e890590f84554cf90eae627b2d4e81 100644
--- a/MEMO
+++ b/MEMO
@@ -47,8 +47,14 @@ To-do
 
 - Make xfail test for strided access.
 
+- Test join_inames
+
 - *_dimension -> *_iname
 
+- Debug axpy nondet fail
+
+- Make tests run on GPUs
+
 Fixes:
 
 - Group instructions by dependency/inames for scheduling, to
diff --git a/doc/reference.rst b/doc/reference.rst
index 2cc0578bde0f48dbfda0ff249d23fa45d5e9802a..1e77eeb734bfedc3e6d19cfe3d36012a1bd7cf59 100644
--- a/doc/reference.rst
+++ b/doc/reference.rst
@@ -103,8 +103,8 @@ Automatic local axes are chosen as follows:
     #. Assign the low-stride iname to the available axis, splitting
         the iname if it is too long for the available axis size.
 
-If you need different behavior, use :func:`tag_dimensions` and
-:func:`split_dimension` to change the assignment of `"l.auto"` axes
+If you need different behavior, use :func:`tag_inames` and
+:func:`split_iname` to change the assignment of `"l.auto"` axes
 manually.
 
 .. _creating-kernels:
@@ -152,14 +152,14 @@ function, which takes the same arguments, but does some extra post-processing.
 
 .. autofunction:: make_kernel
 
-Wrangling dimensions
---------------------
+Wrangling inames
+----------------
 
-.. autofunction:: split_dimension
+.. autofunction:: split_iname
 
-.. autofunction:: join_dimensions
+.. autofunction:: join_inames
 
-.. autofunction:: tag_dimensions
+.. autofunction:: tag_inames
 
 Dealing with Substitution Rules
 -------------------------------
diff --git a/examples/matrix-mul.py b/examples/matrix-mul.py
index d0f11c261e434efdde8264ab8e640428b9a57ed5..6c4d9e97e362d074c5d379928162ba69ff4cdcc9 100644
--- a/examples/matrix-mul.py
+++ b/examples/matrix-mul.py
@@ -48,11 +48,11 @@ def image_matrix_mul_ilp(ctx_factory=cl.create_some_context):
             name="matmul")
 
     ilp = 4
-    knl = lp.split_dimension(knl, "i", 2, outer_tag="g.0", inner_tag="l.1")
+    knl = lp.split_iname(knl, "i", 2, outer_tag="g.0", inner_tag="l.1")
     j_inner_split = 16
-    knl = lp.split_dimension(knl, "j", ilp*j_inner_split, outer_tag="g.1")
-    knl = lp.split_dimension(knl, "j_inner", j_inner_split, outer_tag="ilp", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 2)
+    knl = lp.split_iname(knl, "j", ilp*j_inner_split, outer_tag="g.1")
+    knl = lp.split_iname(knl, "j_inner", j_inner_split, outer_tag="ilp", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 2)
 
     knl = lp.add_prefetch(knl, 'a', ["i_inner", "k_inner"])
     knl = lp.add_prefetch(knl, 'b', ["j_inner_outer", "j_inner_inner", "k_inner"])
diff --git a/loopy/__init__.py b/loopy/__init__.py
index 9c61523078831c4a09ca2319d9bb7bd4e385097f..ca443db752f54498ca17b82a530d4e511cc095e6 100644
--- a/loopy/__init__.py
+++ b/loopy/__init__.py
@@ -11,6 +11,8 @@ register_mpz_with_pymbolic()
 import islpy as isl
 from islpy import dim_type
 
+from pytools import MovedFunctionDeprecationWrapper
+
 
 
 
@@ -50,8 +52,9 @@ __all__ = ["ValueArg", "ScalarArg", "GlobalArg", "ArrayArg", "ConstantArg", "Ima
         "generate_loop_schedules",
         "generate_code",
         "CompiledKernel", "auto_test_vs_ref", "check_kernels",
-        "make_kernel", "split_dimension", "join_dimensions",
-        "tag_dimensions",
+        "make_kernel", 
+        "split_iname", "join_inames", "tag_inames",
+        "split_dimension", "join_dimensions", "tag_dimensions",
         "extract_subst", "expand_subst",
         "precompute", "add_prefetch",
         "split_arg_axis", "find_padding_multiple", "add_padding"
@@ -62,9 +65,9 @@ class infer_type:
 
 # }}}
 
-# {{{ dimension split
+# {{{ split inames
 
-def split_dimension(kernel, split_iname, inner_length,
+def split_iname(kernel, split_iname, inner_length,
         outer_iname=None, inner_iname=None,
         outer_tag=None, inner_tag=None,
         slabs=(0, 0), do_tagged_check=True):
@@ -168,16 +171,18 @@ def split_dimension(kernel, split_iname, inner_length,
                 ))
 
     if existing_tag is not None:
-        result = tag_dimensions(result,
+        result = tag_inames(result,
                 {outer_iname: existing_tag, inner_iname: existing_tag})
 
-    return tag_dimensions(result, {outer_iname: outer_tag, inner_iname: inner_tag})
+    return tag_inames(result, {outer_iname: outer_tag, inner_iname: inner_tag})
+
+split_dimension = MovedFunctionDeprecationWrapper(split_iname)
 
 # }}}
 
-# {{{ dimension join
+# {{{ join inames
 
-def join_dimensions(kernel, inames, new_iname=None, tag=AutoFitLocalIndexTag()):
+def join_inames(kernel, inames, new_iname=None, tag=AutoFitLocalIndexTag()):
     """
     :arg inames: fastest varying last
     """
@@ -264,13 +269,15 @@ def join_dimensions(kernel, inames, new_iname=None, tag=AutoFitLocalIndexTag()):
                 applied_iname_rewrites=kernel.applied_iname_rewrites + [subst_map]
                 ))
 
-    return tag_dimensions(result, {new_iname: tag})
+    return tag_inames(result, {new_iname: tag})
+
+join_dimensions = MovedFunctionDeprecationWrapper(join_inames)
 
 # }}}
 
-# {{{ dimension tag
+# {{{ tag inames
 
-def tag_dimensions(kernel, iname_to_tag, force=False):
+def tag_inames(kernel, iname_to_tag, force=False):
     from loopy.kernel import parse_tag
 
     iname_to_tag = dict((iname, parse_tag(tag))
@@ -315,6 +322,8 @@ def tag_dimensions(kernel, iname_to_tag, force=False):
 
     return kernel.copy(iname_to_tag=new_iname_to_tag)
 
+tag_dimensions = MovedFunctionDeprecationWrapper(tag_inames)
+
 # }}}
 
 # {{{ convenience: add_prefetch
diff --git a/loopy/creation.py b/loopy/creation.py
index 99951635defce433b38148ecf66c8a30ce046507..6be68cfbe6fb48b204743cc4e362b22389534faa 100644
--- a/loopy/creation.py
+++ b/loopy/creation.py
@@ -27,8 +27,8 @@ def tag_reduction_inames_as_sequential(knl):
         if tag is None:
             new_iname_to_tag[iname] = ForceSequentialTag()
 
-    from loopy import tag_dimensions
-    return tag_dimensions(knl, new_iname_to_tag)
+    from loopy import tag_inames
+    return tag_inames(knl, new_iname_to_tag)
 
 # {{{ sanity checking
 
@@ -397,8 +397,8 @@ def make_kernel(*args, **kwargs):
     from loopy.kernel import LoopKernel
     knl = LoopKernel(*args, **kwargs)
 
-    from loopy import tag_dimensions
-    knl = tag_dimensions(
+    from loopy import tag_inames
+    knl = tag_inames(
             knl.copy(iname_to_tag_requests=None),
             knl.iname_to_tag_requests).copy(
                     iname_to_tag_requests=[])
diff --git a/loopy/cse.py b/loopy/cse.py
index 65dcf22d92cb42462086d437b0abc9073be81368..809748b0bc1739b8b19e5259de0555b379ce1f43 100644
--- a/loopy/cse.py
+++ b/loopy/cse.py
@@ -843,8 +843,8 @@ def precompute(kernel, subst_use, dtype, sweep_inames=[],
             substitutions=new_substs,
             temporary_variables=new_temporary_variables)
 
-    from loopy import tag_dimensions
-    return tag_dimensions(result, new_iname_to_tag)
+    from loopy import tag_inames
+    return tag_inames(result, new_iname_to_tag)
 
 
 
diff --git a/loopy/padding.py b/loopy/padding.py
index c3b67a2528cf3876f13d46f98a3597957d5661f4..307a380b67bece5e8dbd87451b84c557945689fe 100644
--- a/loopy/padding.py
+++ b/loopy/padding.py
@@ -152,10 +152,10 @@ def split_arg_axis(kernel, args_and_axes, count):
             .map_expressions(aash)
             .copy(args=new_args))
 
-    from loopy import split_dimension
+    from loopy import split_iname
 
-    for split_iname, (outer_iname, inner_iname) in split_vars.iteritems():
-        result = split_dimension(result, split_iname, count,
+    for iname, (outer_iname, inner_iname) in split_vars.iteritems():
+        result = split_iname(result, iname, count,
                 outer_iname=outer_iname, inner_iname=inner_iname)
 
     return result
diff --git a/loopy/preprocess.py b/loopy/preprocess.py
index 2e4b98ba66ab73787b7fa1bcb1b421823ccec1dc..46263b6d73db09cae9b940414523d8d3843eb32c 100644
--- a/loopy/preprocess.py
+++ b/loopy/preprocess.py
@@ -557,8 +557,7 @@ def get_auto_axis_iname_ranking_by_stride(kernel, insn):
 # {{{ assign automatic axes
 
 def assign_automatic_axes(kernel, axis=0, local_size=None):
-    from loopy.kernel import (AutoLocalIndexTagBase, LocalIndexTag,
-            UnrollTag)
+    from loopy.kernel import (AutoLocalIndexTagBase, LocalIndexTag)
 
     # Realize that at this point in time, axis lengths are already
     # fixed. So we compute them once and pass them to our recursive
@@ -615,13 +614,13 @@ def assign_automatic_axes(kernel, axis=0, local_size=None):
         else:
             new_tag = LocalIndexTag(axis)
             if desired_length > local_size[axis]:
-                from loopy import split_dimension
+                from loopy import split_iname
 
                 # Don't be tempted to switch the outer tag to unroll--this may
                 # generate tons of code on some examples.
 
                 return assign_automatic_axes(
-                        split_dimension(kernel, iname, inner_length=local_size[axis],
+                        split_iname(kernel, iname, inner_length=local_size[axis],
                             outer_tag=None, inner_tag=new_tag,
                             do_tagged_check=False),
                         axis=recursion_axis, local_size=local_size)
diff --git a/proto-tests/test_dg.py b/proto-tests/test_dg.py
index bfd2526bf0a808001b5b5668f4e888dd44ef2988..c9404ea31f644c0eaab3581baf483a18b5648d3e 100644
--- a/proto-tests/test_dg.py
+++ b/proto-tests/test_dg.py
@@ -61,13 +61,13 @@ def test_dg_matrix_mul(ctx_factory):
             name="dg_matmul")
 
     #ilp = 4
-    knl = lp.split_dimension(knl, "i", 30, 32, outer_tag="g.0", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 16, outer_tag="g.1", inner_tag="l.1")
-    #knl = lp.split_dimension(knl, "k_inner", 16, outer_tag="ilp", inner_tag="l.1")
+    knl = lp.split_iname(knl, "i", 30, 32, outer_tag="g.0", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 16, outer_tag="g.1", inner_tag="l.1")
+    #knl = lp.split_iname(knl, "k_inner", 16, outer_tag="ilp", inner_tag="l.1")
 
     assert Np % 2 == 0
-    #knl = lp.split_dimension(knl, "j", Np//2)
-    #knl = lp.split_dimension(knl, "k", 32)
+    #knl = lp.split_iname(knl, "j", Np//2)
+    #knl = lp.split_iname(knl, "k", 32)
 
     #for mn in matrix_names:
         #knl = lp.add_prefetch(knl, mn, ["j", "i_inner"])
diff --git a/proto-tests/test_fem_assembly.py b/proto-tests/test_fem_assembly.py
index c3823d504a41db981d35f5e3900e6edf441f781a..a2cba7c5766f5e66ab0e87608ee07b3dff5269ad 100644
--- a/proto-tests/test_fem_assembly.py
+++ b/proto-tests/test_fem_assembly.py
@@ -44,21 +44,21 @@ def test_laplacian_stiffness(ctx_factory):
             ],
             name="lapquad", assumptions="Nc>=1")
 
-    knl = lp.tag_dimensions(knl, dict(ax_b="unr"))
+    knl = lp.tag_inames(knl, dict(ax_b="unr"))
     seq_knl = knl
 
     def variant_fig31(knl):
         # This (mostly) reproduces Figure 3.1.
 
-        knl = lp.tag_dimensions(knl, {"dx_axis": "unr"})
+        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
         return knl, ["K", "i", "j", "q", "ax_b_insn"]
 
     def variant_pg4(knl):
         # This (mostly) reproduces the unlabeled code snippet on pg. 4.
 
-        knl = lp.tag_dimensions(knl, {"dx_axis": "unr"})
+        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
         Ncloc = 16
-        knl = lp.split_dimension(knl, "K", Ncloc,
+        knl = lp.split_iname(knl, "K", Ncloc,
                 outer_iname="Ko", inner_iname="Kloc")
         return knl, ["Ko", "Kloc", "i", "j", "q", "ax_b_insn"]
 
@@ -66,21 +66,21 @@ def test_laplacian_stiffness(ctx_factory):
         # This (mostly) reproduces Figure 3.2.
 
         Ncloc = 16
-        knl = lp.split_dimension(knl, "K", Ncloc,
+        knl = lp.split_iname(knl, "K", Ncloc,
                 outer_iname="Ko", inner_iname="Kloc")
         knl = lp.precompute(knl, "dPsi", np.float32, ["i", "q", "dx_axis"],
                 default_tag=None)
-        knl = lp.tag_dimensions(knl, {"dx_axis": "unr", "dxi": "unr"})
+        knl = lp.tag_inames(knl, {"dx_axis": "unr", "dxi": "unr"})
         return knl, ["Ko", "Kloc", "dPsi_q", "ij", "i", "j", "q", "ax_b_insn"]
 
     def variant_fig33(knl):
         # This is meant to (mostly) reproduce Figure 3.3.
 
         Ncloc = 16
-        knl = lp.split_dimension(knl, "K", Ncloc,
+        knl = lp.split_iname(knl, "K", Ncloc,
                 outer_iname="Ko", inner_iname="Kloc")
         knl = lp.precompute(knl, "dPsi$one", np.float32, ["dx_axis"], default_tag=None)
-        knl = lp.tag_dimensions(knl, {"j": "ilp.seq"})
+        knl = lp.tag_inames(knl, {"j": "ilp.seq"})
 
         return knl, ["Ko", "Kloc"]
 
@@ -91,12 +91,12 @@ def test_laplacian_stiffness(ctx_factory):
         # to reverse-engineer what is going on there. Some discussion might
         # help, too. :)
 
-        knl = lp.tag_dimensions(knl, {"dx_axis": "unr"})
+        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
         Ncloc = 16
-        knl = lp.split_dimension(knl, "K", Ncloc,
+        knl = lp.split_iname(knl, "K", Ncloc,
                 outer_iname="Ko", inner_iname="Kloc",
                 outer_tag="g.0")
-        knl = lp.tag_dimensions(knl, {"i": "l.1", "j": "l.0"})
+        knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"})
         return knl, ["K", "i", "j", "q", "ax_b_insn"]
 
     def variant_simple_gpu_prefetch(knl):
@@ -106,12 +106,12 @@ def test_laplacian_stiffness(ctx_factory):
         # for the upper bound of Kloc (it uses Nc). I'll investigate and
         # fix that. (FIXME)
 
-        knl = lp.tag_dimensions(knl, {"dx_axis": "unr"})
+        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
         Ncloc = 16
-        knl = lp.split_dimension(knl, "K", Ncloc,
+        knl = lp.split_iname(knl, "K", Ncloc,
                 outer_iname="Ko", inner_iname="Kloc",
                 outer_tag="g.0")
-        knl = lp.tag_dimensions(knl, {"i": "l.1", "j": "l.0"})
+        knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"})
         knl = lp.add_prefetch(knl, "w", ["q"])
         knl = lp.add_prefetch(knl, "DPsi", [0, 1, 2])
         knl = lp.add_prefetch(knl, "jacInv", [0, 1, 3])
diff --git a/proto-tests/test_sem.py b/proto-tests/test_sem.py
index 888ecdd2b88702b47326910fef9786c594acb670..69fec550128b14b14d52b53eeb8d17542384d651 100644
--- a/proto-tests/test_sem.py
+++ b/proto-tests/test_sem.py
@@ -85,19 +85,19 @@ def test_laplacian(ctx_factory):
     else:
         seq_knl = knl
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
     knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
     knl = lp.add_prefetch(knl, "D", ["m", "j"])
     #knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
 
-    #knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 
     #print seq_knl
     #print lp.preprocess_kernel(knl)
     #1/0
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl,
             loop_priority=["m_fetch_G", "i_fetch_u"])
@@ -160,18 +160,18 @@ def test_laplacian_lmem(ctx_factory):
     else:
         seq_knl = knl
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
     knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
     knl = lp.add_prefetch(knl, "D", ["m", "j"])
     knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
-    #knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 
     #print seq_knl
     #print lp.preprocess_kernel(knl)
     #1/0
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl)
     kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
@@ -227,8 +227,8 @@ def test_laplacian_lmem_ilp(ctx_factory):
     # Must act on u first, otherwise stencil becomes crooked and
     # footprint becomes non-convex.
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 
     knl = lp.add_prefetch(knl, "u", [1, 2, 3, "e_inner_inner"])
 
@@ -242,7 +242,7 @@ def test_laplacian_lmem_ilp(ctx_factory):
     #print seq_knl
     #1/0
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl)
     kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
@@ -330,9 +330,9 @@ def test_advect(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
 
     kernel_gen = lp.generate_loop_schedules(knl)
@@ -448,9 +448,9 @@ def test_advect_dealias(ctx_factory):
     print knl
     1/0
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     print knl
     #1/0
@@ -512,9 +512,9 @@ def test_interp_diff(ctx_factory):
     print knl
     1/0
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     print knl
     #1/0
diff --git a/proto-tests/test_sem_tim.py b/proto-tests/test_sem_tim.py
index 04d6aeed44f14c10796453de539ff7f89a311906..d693b5e83a63bb92e40d0753b64954e42fe8cae0 100644
--- a/proto-tests/test_sem_tim.py
+++ b/proto-tests/test_sem_tim.py
@@ -85,19 +85,19 @@ def test_laplacian(ctx_factory):
     else:
         seq_knl = knl
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
     knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]")
     knl = lp.add_prefetch(knl, "D", ["m", "j"])
     #knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]")
 
-    #knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 
     #print seq_knl
     #print lp.preprocess_kernel(knl)
     #1/0
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl,
             loop_priority=["m_fetch_G", "i_fetch_u"])
@@ -154,7 +154,7 @@ def test_laplacian_lmem(ctx_factory):
         knl = lp.precompute(knl, "ur", np.float32, ["a", "b", "c"])
         knl = lp.precompute(knl, "us", np.float32, ["a", "b", "c"])
         knl = lp.precompute(knl, "ut", np.float32, ["a", "b", "c"])
-        knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+        knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
         knl = lp.add_prefetch(knl, "D", ["m", "j", "k", "i"])
     else:
         # experiment
@@ -163,7 +163,7 @@ def test_laplacian_lmem(ctx_factory):
         knl = lp.precompute(knl, "ur", np.float32, ["b", "c"])
         knl = lp.precompute(knl, "us", np.float32, ["b", "c"])
         knl = lp.precompute(knl, "ut", np.float32, ["b", "c"])
-        knl = lp.split_dimension(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
+        knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
         knl = lp.add_prefetch(knl, "D", ["m", "j", "k", "i"])
 
 
@@ -173,7 +173,7 @@ def test_laplacian_lmem(ctx_factory):
     #print knl
     #1/0
 
-    #knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 #    knl = lp.join_dimensions(knl, ["i", "j"], "i_and_j")
 
     #print seq_knl
@@ -182,7 +182,7 @@ def test_laplacian_lmem(ctx_factory):
 
 # TW: turned this off since it generated:
 # ValueError: cannot tag 'i_and_j'--not known
-#    knl = lp.tag_dimensions(knl, dict(i_and_j="l.0", k="l.1"))
+#    knl = lp.tag_inames(knl, dict(i_and_j="l.0", k="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl)
     kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
@@ -238,8 +238,8 @@ def test_laplacian_lmem_ilp(ctx_factory):
     # Must act on u first, otherwise stencil becomes crooked and
     # footprint becomes non-convex.
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp")
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
 
     knl = lp.add_prefetch(knl, "u", [1, 2, 3, "e_inner_inner"])
 
@@ -253,7 +253,7 @@ def test_laplacian_lmem_ilp(ctx_factory):
     #print seq_knl
     #1/0
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     kernel_gen = lp.generate_loop_schedules(knl)
     kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))
@@ -341,9 +341,9 @@ def test_advect(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
 
     kernel_gen = lp.generate_loop_schedules(knl)
@@ -459,9 +459,9 @@ def test_advect_dealias(ctx_factory):
     print knl
     1/0
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     print knl
     #1/0
@@ -523,9 +523,9 @@ def test_interp_diff(ctx_factory):
     print knl
     1/0
 
-    knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
 
     print knl
     #1/0
diff --git a/proto-tests/test_tim.py b/proto-tests/test_tim.py
index 84523146dd586c634c382a2c1019a04b358c3974..866224e116cdd37a003b92f377b9eccf22f53659 100644
--- a/proto-tests/test_tim.py
+++ b/proto-tests/test_tim.py
@@ -53,11 +53,11 @@ def test_tim2d(ctx_factory):
     knl = lp.add_prefetch(knl, "u", ["i", "j",  "o"])
     knl = lp.precompute(knl, "ur", np.float32, ["a", "b"])
     knl = lp.precompute(knl, "us", np.float32, ["a", "b"])
-    knl = lp.split_dimension(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1"))
-    knl = lp.tag_dimensions(knl, dict(o="unr"))
-    knl = lp.tag_dimensions(knl, dict(m="unr"))
+    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
+    knl = lp.tag_inames(knl, dict(o="unr"))
+    knl = lp.tag_inames(knl, dict(m="unr"))
 
     
 #    knl = lp.add_prefetch(knl, "G", [2,3], default_tag=None) # axis/argument indices on G
@@ -116,12 +116,12 @@ def test_red2d(ctx_factory):
     knl = lp.precompute(knl, "ue", np.float32, ["a", "b", "m"])
     knl = lp.precompute(knl, "ur", np.float32, ["a", "b"])
     knl = lp.precompute(knl, "us", np.float32, ["a", "b"])
-    knl = lp.split_dimension(knl, "e", 2, outer_tag="g.0")
-    knl = lp.split_dimension(knl, "j", n, inner_tag="l.0")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "i", n, inner_tag="l.1")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 2, outer_tag="g.0")
+    knl = lp.split_iname(knl, "j", n, inner_tag="l.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "i", n, inner_tag="l.1")#, slabs=(0, 1))
 
-    knl = lp.tag_dimensions(knl, dict(o="unr"))
-    knl = lp.tag_dimensions(knl, dict(m="unr"))
+    knl = lp.tag_inames(knl, dict(o="unr"))
+    knl = lp.tag_inames(knl, dict(m="unr"))
 
     
     knl = lp.add_prefetch(knl, "G", [2,3]) # axis/argument indices on G
@@ -182,16 +182,16 @@ def test_tim3d(ctx_factory):
     knl = lp.precompute(knl, "ur", np.float32, ["a", "b", "c"])
     knl = lp.precompute(knl, "us", np.float32, ["a", "b", "c"])
     knl = lp.precompute(knl, "ut", np.float32, ["a", "b", "c"])
-    knl = lp.split_dimension(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "k", n, inner_tag="l.2")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "j", n, inner_tag="l.1")#, slabs=(0, 1))
-    knl = lp.split_dimension(knl, "i", n, inner_tag="l.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "k", n, inner_tag="l.2")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "j", n, inner_tag="l.1")#, slabs=(0, 1))
+    knl = lp.split_iname(knl, "i", n, inner_tag="l.0")#, slabs=(0, 1))
 
-#    knl = lp.tag_dimensions(knl, dict(k_nner="unr"))
+#    knl = lp.tag_inames(knl, dict(k_nner="unr"))
 
-    knl = lp.tag_dimensions(knl, dict(o="unr"))
-    knl = lp.tag_dimensions(knl, dict(m="unr"))
-#    knl = lp.tag_dimensions(knl, dict(i="unr"))
+    knl = lp.tag_inames(knl, dict(o="unr"))
+    knl = lp.tag_inames(knl, dict(m="unr"))
+#    knl = lp.tag_inames(knl, dict(i="unr"))
 
     knl = lp.add_prefetch(knl, "G", [2,3,4]) # axis/argument indices on G
 
diff --git a/test/test_linalg.py b/test/test_linalg.py
index 00b63ec6f66fa566aa8655192fbcd301870e135b..c37134347c864f3f2d02c991d28e4dc1139d8c99 100644
--- a/test/test_linalg.py
+++ b/test/test_linalg.py
@@ -124,15 +124,15 @@ def test_axpy(ctx_factory):
         def variant_cpu(knl):
             unroll = 16
             block_size = unroll*4096
-            knl = lp.split_dimension(knl, "i", block_size, outer_tag="g.0", slabs=(0, 1))
-            knl = lp.split_dimension(knl, "i_inner", unroll, inner_tag="unr")
+            knl = lp.split_iname(knl, "i", block_size, outer_tag="g.0", slabs=(0, 1))
+            knl = lp.split_iname(knl, "i_inner", unroll, inner_tag="unr")
             return knl
 
         def variant_gpu(knl):
             unroll = 4
             block_size = 256
-            knl = lp.split_dimension(knl, "i", unroll*block_size, outer_tag="g.0", slabs=(0, 1))
-            knl = lp.split_dimension(knl, "i_inner", block_size, outer_tag="unr", inner_tag="l.0")
+            knl = lp.split_iname(knl, "i", unroll*block_size, outer_tag="g.0", slabs=(0, 1))
+            knl = lp.split_iname(knl, "i_inner", block_size, outer_tag="unr", inner_tag="l.0")
             return knl
 
         for variant in [variant_cpu, variant_gpu]:
@@ -169,9 +169,9 @@ def test_transpose(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "i", 16,
+    knl = lp.split_iname(knl, "i", 16,
             outer_tag="g.0", inner_tag="l.1")
-    knl = lp.split_dimension(knl, "j", 16,
+    knl = lp.split_iname(knl, "j", 16,
             outer_tag="g.1", inner_tag="l.0")
     knl = lp.add_prefetch(knl, 'a', ["i_inner", "j_inner"])
 
@@ -209,11 +209,11 @@ def test_plain_matrix_mul(ctx_factory):
 
         ref_knl = knl
 
-        knl = lp.split_dimension(knl, "i", 16,
+        knl = lp.split_iname(knl, "i", 16,
                 outer_tag="g.0", inner_tag="l.1")
-        knl = lp.split_dimension(knl, "j", 16,
+        knl = lp.split_iname(knl, "j", 16,
                 outer_tag="g.1", inner_tag="l.0")
-        knl = lp.split_dimension(knl, "k", 16)
+        knl = lp.split_iname(knl, "k", 16)
         knl = lp.add_prefetch(knl, "a", ["k_inner", "i_inner"])
         knl = lp.add_prefetch(knl, "b", ["j_inner", "k_inner", ])
 
@@ -250,11 +250,11 @@ def test_variable_size_matrix_mul(ctx_factory):
 
     ref_knl = knl
 
-    knl = lp.split_dimension(knl, "i", 16,
+    knl = lp.split_iname(knl, "i", 16,
             outer_tag="g.0", inner_tag="l.1")
-    knl = lp.split_dimension(knl, "j", 8,
+    knl = lp.split_iname(knl, "j", 8,
             outer_tag="g.1", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 32)
+    knl = lp.split_iname(knl, "k", 32)
 
     knl = lp.add_prefetch(knl, "a", ["k_inner", "i_inner"])
     knl = lp.add_prefetch(knl, "b", ["j_inner", "k_inner"])
@@ -296,9 +296,9 @@ def test_rank_one(ctx_factory):
         return knl
 
     def variant_2(knl):
-        knl = lp.split_dimension(knl, "i", 16,
+        knl = lp.split_iname(knl, "i", 16,
                 outer_tag="g.0", inner_tag="l.0")
-        knl = lp.split_dimension(knl, "j", 16,
+        knl = lp.split_iname(knl, "j", 16,
                 outer_tag="g.1", inner_tag="l.1")
 
         knl = lp.add_prefetch(knl, "a")
@@ -306,9 +306,9 @@ def test_rank_one(ctx_factory):
         return knl
 
     def variant_3(knl):
-        knl = lp.split_dimension(knl, "i", 16,
+        knl = lp.split_iname(knl, "i", 16,
                 outer_tag="g.0", inner_tag="l.0")
-        knl = lp.split_dimension(knl, "j", 16,
+        knl = lp.split_iname(knl, "j", 16,
                 outer_tag="g.1", inner_tag="l.1")
 
         knl = lp.add_prefetch(knl, "a", ["i_inner"])
@@ -316,22 +316,22 @@ def test_rank_one(ctx_factory):
         return knl
 
     def variant_4(knl):
-        knl = lp.split_dimension(knl, "i", 256,
+        knl = lp.split_iname(knl, "i", 256,
                 outer_tag="g.0", slabs=(0, 1))
-        knl = lp.split_dimension(knl, "j", 256,
+        knl = lp.split_iname(knl, "j", 256,
                 outer_tag="g.1", slabs=(0, 1))
 
         knl = lp.add_prefetch(knl, "a", ["i_inner"], default_tag=None)
         knl = lp.add_prefetch(knl, "b", ["j_inner"], default_tag=None)
 
-        knl = lp.split_dimension(knl, "i_inner", 16,
+        knl = lp.split_iname(knl, "i_inner", 16,
                 inner_tag="l.0")
-        knl = lp.split_dimension(knl, "j_inner", 16,
+        knl = lp.split_iname(knl, "j_inner", 16,
                 inner_tag="l.1")
 
-        knl = lp.split_dimension(knl, "a_dim_0", 16,
+        knl = lp.split_iname(knl, "a_dim_0", 16,
                 outer_tag="l.1", inner_tag="l.0")
-        knl = lp.split_dimension(knl, "b_dim_0", 16,
+        knl = lp.split_iname(knl, "b_dim_0", 16,
                 outer_tag="l.1", inner_tag="l.0")
         return knl
 
@@ -374,11 +374,11 @@ def test_troublesome_premagma_fermi_matrix_mul(ctx_factory):
     j_reg = 2
     i_chunks = 16
     j_chunks = 16
-    knl = lp.split_dimension(knl, "i", i_reg*i_chunks, outer_tag="g.0")
-    knl = lp.split_dimension(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "j", j_reg*j_chunks, outer_tag="g.1")
-    knl = lp.split_dimension(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "k", 16)
+    knl = lp.split_iname(knl, "i", i_reg*i_chunks, outer_tag="g.0")
+    knl = lp.split_iname(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
+    knl = lp.split_iname(knl, "j", j_reg*j_chunks, outer_tag="g.1")
+    knl = lp.split_iname(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
+    knl = lp.split_iname(knl, "k", 16)
     knl = lp.add_prefetch(knl, 'a', ["k_inner", "i_inner_inner", "i_inner_outer"])
 
     kernel_gen = lp.generate_loop_schedules(knl)
@@ -416,12 +416,12 @@ def test_intel_matrix_mul(ctx_factory):
     j_reg = 4
     i_chunks = 16
     j_chunks = 16
-    knl = lp.split_dimension(knl, "i", i_reg*i_chunks, outer_tag="g.0")
-    knl = lp.split_dimension(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "j", j_reg*j_chunks, outer_tag="g.1")
-    knl = lp.split_dimension(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "k", 16)
-    #knl = lp.split_dimension(knl, "k_inner", 8, outer_tag="unr")
+    knl = lp.split_iname(knl, "i", i_reg*i_chunks, outer_tag="g.0")
+    knl = lp.split_iname(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
+    knl = lp.split_iname(knl, "j", j_reg*j_chunks, outer_tag="g.1")
+    knl = lp.split_iname(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
+    knl = lp.split_iname(knl, "k", 16)
+    #knl = lp.split_iname(knl, "k_inner", 8, outer_tag="unr")
 
     knl = lp.add_prefetch(knl, 'a', ["i_inner_inner", "k_inner", "i_inner_outer"])
     knl = lp.add_prefetch(knl, 'b', ["j_inner_inner", "k_inner", "j_inner_outer"])
@@ -469,12 +469,12 @@ def test_magma_fermi_matrix_mul(ctx_factory):
     j_chunks = 16
 
 
-    knl = lp.split_dimension(knl, "i", i_reg*i_chunks, outer_tag="g.0")
-    knl = lp.split_dimension(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "j", j_reg*j_chunks, outer_tag="g.1")
-    knl = lp.split_dimension(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
-    knl = lp.split_dimension(knl, "k", 16)
-    knl = lp.split_dimension(knl, "k_inner", 8, outer_tag="unr")
+    knl = lp.split_iname(knl, "i", i_reg*i_chunks, outer_tag="g.0")
+    knl = lp.split_iname(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
+    knl = lp.split_iname(knl, "j", j_reg*j_chunks, outer_tag="g.1")
+    knl = lp.split_iname(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
+    knl = lp.split_iname(knl, "k", 16)
+    knl = lp.split_iname(knl, "k_inner", 8, outer_tag="unr")
     # FIXME
     #knl = lp.add_prefetch(knl, 'a', ["k_inner", "i_inner_inner", "i_inner_outer"])
     #knl = lp.add_prefetch(knl, 'b', ["k_inner", ("j_inner_inner", "j_inner_outer"),])
@@ -511,9 +511,9 @@ def test_image_matrix_mul(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0", inner_tag="l.1")
-    knl = lp.split_dimension(knl, "j", 16, outer_tag="g.1", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 32)
+    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.1")
+    knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 32)
     # conflict-free
     knl = lp.add_prefetch(knl, 'a', ["i_inner", "k_inner"])
     knl = lp.add_prefetch(knl, 'b', ["j_inner", "k_inner"])
@@ -549,11 +549,11 @@ def test_image_matrix_mul_ilp(ctx_factory):
     seq_knl = knl
 
     ilp = 4
-    knl = lp.split_dimension(knl, "i", 2, outer_tag="g.0", inner_tag="l.1")
+    knl = lp.split_iname(knl, "i", 2, outer_tag="g.0", inner_tag="l.1")
     j_inner_split = 4
-    knl = lp.split_dimension(knl, "j", ilp*j_inner_split, outer_tag="g.1")
-    knl = lp.split_dimension(knl, "j_inner", j_inner_split, outer_tag="ilp", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 2)
+    knl = lp.split_iname(knl, "j", ilp*j_inner_split, outer_tag="g.1")
+    knl = lp.split_iname(knl, "j_inner", j_inner_split, outer_tag="ilp", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 2)
     # conflict-free?
     knl = lp.add_prefetch(knl, 'a', ["i_inner", "k_inner"])
     knl = lp.add_prefetch(knl, 'b', ["j_inner_outer", "j_inner_inner", "k_inner"])
@@ -586,8 +586,8 @@ def test_ilp_race_matmul(ctx_factory):
                 ],
             name="matmul")
 
-    knl = lp.split_dimension(knl, "j", 2, outer_tag="ilp", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 2)
+    knl = lp.split_iname(knl, "j", 2, outer_tag="ilp", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 2)
     knl = lp.add_prefetch(knl, 'b', ["k_inner"])
 
     from loopy.check import WriteRaceConditionError
@@ -621,9 +621,9 @@ def test_fancy_matrix_mul(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0", inner_tag="l.1")
-    knl = lp.split_dimension(knl, "j", 16, outer_tag="g.1", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "k", 16, slabs=(0,1))
+    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.1")
+    knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.0")
+    knl = lp.split_iname(knl, "k", 16, slabs=(0,1))
     knl = lp.add_prefetch(knl, 'a', ["i_inner", "k_inner"])
     knl = lp.add_prefetch(knl, 'b', ["k_inner", "j_inner"])
 
diff --git a/test/test_loopy.py b/test/test_loopy.py
index fdcd58af1361cda34d4f7a55bc87f6119dd885e2..0203bb1d8fbd84e297415a6e6754e12c98870187 100644
--- a/test/test_loopy.py
+++ b/test/test_loopy.py
@@ -72,7 +72,7 @@ def test_multi_cse(ctx_factory):
             [lp.GlobalArg("a", np.float32, shape=(100,))],
             local_sizes={0: 16})
 
-    knl = lp.split_dimension(knl, "i", 16, inner_tag="l.0")
+    knl = lp.split_iname(knl, "i", 16, inner_tag="l.0")
     knl = lp.add_prefetch(knl, "a", [])
 
     kernel_gen = lp.generate_loop_schedules(knl)
@@ -111,8 +111,8 @@ def test_stencil(ctx_factory):
     ref_knl = knl
 
     def variant_1(knl):
-        knl = lp.split_dimension(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
-        knl = lp.split_dimension(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
+        knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
+        knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
         knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
         return knl
 
@@ -141,8 +141,8 @@ def test_eq_constraint(ctx_factory):
                 lp.GlobalArg("b", np.float32, shape=(1000,))
                 ])
 
-    knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0")
-    knl = lp.split_dimension(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
+    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0")
+    knl = lp.split_iname(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
 
     kernel_gen = lp.generate_loop_schedules(knl)
     kernel_gen = lp.check_kernels(kernel_gen)
@@ -397,7 +397,7 @@ def test_dependent_loop_bounds_2(ctx_factory):
                 ],
             assumptions="n>=1 and row_len>=1")
 
-    knl = lp.split_dimension(knl, "i", 128, outer_tag="g.0",
+    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
             inner_tag="l.0")
     cknl = lp.CompiledKernel(ctx, knl)
     print "---------------------------------------------------"
@@ -434,7 +434,7 @@ def test_dependent_loop_bounds_3(ctx_factory):
 
     assert knl.parents_per_domain()[1] == 0
 
-    knl = lp.split_dimension(knl, "i", 128, outer_tag="g.0",
+    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
             inner_tag="l.0")
 
     cknl = lp.CompiledKernel(ctx, knl)
@@ -442,7 +442,7 @@ def test_dependent_loop_bounds_3(ctx_factory):
     cknl.print_code()
     print "---------------------------------------------------"
 
-    knl_bad = lp.split_dimension(knl, "jj", 128, outer_tag="g.1",
+    knl_bad = lp.split_iname(knl, "jj", 128, outer_tag="g.1",
             inner_tag="l.1")
 
     import pytest
@@ -473,9 +473,9 @@ def test_independent_multi_domain(ctx_factory):
                 ])
 
 
-    knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0",
+    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0",
             inner_tag="l.0")
-    knl = lp.split_dimension(knl, "j", 16, outer_tag="g.0",
+    knl = lp.split_iname(knl, "j", 16, outer_tag="g.0",
             inner_tag="l.0")
     assert knl.parents_per_domain() == 2*[None]
 
@@ -544,8 +544,8 @@ def test_equality_constraints(ctx_factory):
 
     seq_knl = knl
 
-    knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
-    knl = lp.split_dimension(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
+    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
+    knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
     #print knl
     #print knl.domains[0].detect_equalities()
 
diff --git a/test/test_nbody.py b/test/test_nbody.py
index 90859883b82e45bd39c3838f867bf4b1a4d01b87..931b460a5ffa0df0ae873ffe3e053be9746b49fe 100644
--- a/test/test_nbody.py
+++ b/test/test_nbody.py
@@ -30,28 +30,28 @@ def test_nbody(ctx_factory):
     seq_knl = knl
 
     def variant_1(knl):
-        knl = lp.split_dimension(knl, "i", 256,
+        knl = lp.split_iname(knl, "i", 256,
                 outer_tag="g.0", inner_tag="l.0",
                 slabs=(0,1))
-        knl = lp.split_dimension(knl, "j", 256, slabs=(0,1))
+        knl = lp.split_iname(knl, "j", 256, slabs=(0,1))
         return knl, []
 
     def variant_cpu(knl):
         knl = lp.expand_subst(knl)
-        knl = lp.split_dimension(knl, "i", 1024,
+        knl = lp.split_iname(knl, "i", 1024,
                 outer_tag="g.0", slabs=(0,1))
         knl = lp.add_prefetch(knl, "x[i,k]", ["k"], default_tag=None)
         return knl, []
 
     def variant_gpu(knl):
         knl = lp.expand_subst(knl)
-        knl = lp.split_dimension(knl, "i", 256,
+        knl = lp.split_iname(knl, "i", 256,
                 outer_tag="g.0", inner_tag="l.0", slabs=(0,1))
-        knl = lp.split_dimension(knl, "j", 256, slabs=(0,1))
+        knl = lp.split_iname(knl, "j", 256, slabs=(0,1))
         knl = lp.add_prefetch(knl, "x[i,k]", ["k"], default_tag=None)
         knl = lp.add_prefetch(knl, "x[j,k]", ["j_inner", "k"],
                 ["x_fetch_j", "x_fetch_k"])
-        knl = lp.tag_dimensions(knl, dict(x_fetch_k="unr"))
+        knl = lp.tag_inames(knl, dict(x_fetch_k="unr"))
         return knl, ["j_outer", "j_inner"]
 
     n = 3000
diff --git a/test/test_sem_reagan.py b/test/test_sem_reagan.py
index 176f1d00462fdb7294564a8db016c74373b8e49e..38afd2489402e14e4314516a743ea7f3b7fb1c8c 100644
--- a/test/test_sem_reagan.py
+++ b/test/test_sem_reagan.py
@@ -52,7 +52,7 @@ def test_tim2d(ctx_factory):
     seq_knl = knl
 
     def variant_orig(knl):
-        knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1", e="g.0"))
+        knl = lp.tag_inames(knl, dict(i="l.0", j="l.1", e="g.0"))
 
         knl = lp.add_prefetch(knl, "D[:,:]")
         knl = lp.add_prefetch(knl, "u[e, :, :]")
@@ -66,8 +66,8 @@ def test_tim2d(ctx_factory):
         knl = lp.add_prefetch(knl, "G$x")
         knl = lp.add_prefetch(knl, "G$y")
 
-        knl = lp.tag_dimensions(knl, dict(o="unr"))
-        knl = lp.tag_dimensions(knl, dict(m="unr"))
+        knl = lp.tag_inames(knl, dict(o="unr"))
+        knl = lp.tag_inames(knl, dict(m="unr"))
 
         knl = lp.set_instruction_priority(knl, "D_fetch", 5)