__copyright__ = """ Copyright (C) 2015 Andreas Kloeckner Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import mesh_data import numpy as np import numpy.linalg as la import pytest import meshmode.mesh.generation as mgen from arraycontext import pytest_generate_tests_for_array_contexts from meshmode import _acf # noqa: F401 from meshmode.discretization.poly_element import ( InterpolatoryEdgeClusteredGroupFactory, QuadratureGroupFactory, ) from meshmode.dof_array import flat_norm from meshmode.mesh import TensorProductElementGroup from pytools.obj_array import flat_obj_array from grudge import dof_desc, geometry, op from grudge.array_context import PytestPyOpenCLArrayContextFactory from grudge.discretization import make_discretization_collection logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts( [PytestPyOpenCLArrayContextFactory]) # {{{ mass operator trig integration @pytest.mark.parametrize("ambient_dim", [1, 2, 3]) @pytest.mark.parametrize("discr_tag", [dof_desc.DISCR_TAG_BASE, dof_desc.DISCR_TAG_QUAD]) def test_mass_mat_trig(actx_factory, ambient_dim, discr_tag): """Check the integral of some trig functions on an interval using the mass matrix. """ actx = actx_factory() nel_1d = 16 order = 4 a = -4.0 * np.pi b = +9.0 * np.pi true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1) from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, discr_tag) if discr_tag is dof_desc.DISCR_TAG_BASE: discr_tag_to_group_factory = {} else: discr_tag_to_group_factory = { discr_tag: QuadratureSimplexGroupFactory(order=2*order) } mesh = mgen.generate_regular_rect_mesh( a=(a,)*ambient_dim, b=(b,)*ambient_dim, nelements_per_axis=(nel_1d,)*ambient_dim, order=1) dcoll = make_discretization_collection( actx, mesh, order=order, discr_tag_to_group_factory=discr_tag_to_group_factory ) def f(x): return actx.np.sin(x[0])**2 volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) x_volm = actx.thaw(volm_disc.nodes()) f_volm = f(x_volm) ones_volm = volm_disc.zeros(actx) + 1 quad_disc = dcoll.discr_from_dd(dd_quad) x_quad = actx.thaw(quad_disc.nodes()) f_quad = f(x_quad) ones_quad = quad_disc.zeros(actx) + 1 mop_1 = op.mass(dcoll, dd_quad, f_quad) num_integral_1 = op.nodal_sum( dcoll, dof_desc.DD_VOLUME_ALL, ones_volm * mop_1 ) err_1 = abs(num_integral_1 - true_integral) assert err_1 < 2e-9, err_1 mop_2 = op.mass(dcoll, dd_quad, ones_quad) num_integral_2 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME_ALL, f_volm * mop_2) err_2 = abs(num_integral_2 - true_integral) assert err_2 < 2e-9, err_2 if discr_tag is dof_desc.DISCR_TAG_BASE: # NOTE: `integral` always makes a square mass matrix and # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method. num_integral_3 = op.nodal_sum(dcoll, dof_desc.DD_VOLUME_ALL, f_quad * mop_2) err_3 = abs(num_integral_3 - true_integral) assert err_3 < 5e-10, err_3 # }}} # {{{ mass operator on surface def _ellipse_surface_area(radius, aspect_ratio): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html eccentricity = 1.0 - (1/aspect_ratio)**2 if abs(aspect_ratio - 2.0) < 1.0e-14: # NOTE: hardcoded value so we don't need scipy for the test ellip_e = 1.2110560275684594 else: from scipy.special import ellipe # pylint: disable=no-name-in-module ellip_e = ellipe(eccentricity) return 4.0 * radius * ellip_e def _spheroid_surface_area(radius, aspect_ratio): # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area a = 1.0 c = aspect_ratio if a < c: e = np.sqrt(1.0 - (a/c)**2) return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e)) else: e = np.sqrt(1.0 - (c/a)**2) return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e)) @pytest.mark.parametrize("name", [ "2-1-ellipse", "spheroid", "box2d", "box3d" ]) def test_mass_surface_area(actx_factory, name): actx = actx_factory() # {{{ cases order = 4 if name == "2-1-ellipse": builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio) elif name == "spheroid": builder = mesh_data.SpheroidMeshBuilder() surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio) elif name == "box2d": builder = mesh_data.BoxMeshBuilder2D() surface_area = 1.0 elif name == "box3d": builder = mesh_data.BoxMeshBuilder3D() surface_area = 1.0 else: raise ValueError(f"unknown geometry name: {name}") # }}} # {{{ convergence from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, order) dcoll = make_discretization_collection(actx, mesh, order=order) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # {{{ compute surface area dd = dof_desc.DD_VOLUME_ALL ones_volm = volume_discr.zeros(actx) + 1 approx_surface_area = actx.to_numpy(op.integral(dcoll, dd, ones_volm)) logger.info( f"surface: got {approx_surface_area:.5e} / expected {surface_area:.5e}") # noqa: G004 area_error = abs(approx_surface_area - surface_area) / abs(surface_area) # }}} # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(dcoll) eoc.add_data_point(actx.to_numpy(h_max), area_error) # }}} logger.info("surface area error\n%s", str(eoc)) assert eoc.max_error() < 3e-13 or eoc.order_estimate() > order # }}} # {{{ mass inverse @pytest.mark.parametrize("name", [ "2-1-ellipse", "spheroid", "warped_rect2", "warped_rect3", "gh-339-1", "gh-339-4", ]) def test_mass_operator_inverse(actx_factory, name): actx = actx_factory() # {{{ cases order = 4 overintegrate = False if name == "2-1-ellipse": # curve builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif name == "spheroid": # surface builder = mesh_data.SpheroidMeshBuilder() elif name.startswith("warped_rect"): builder = mesh_data.WarpedRectMeshBuilder(dim=int(name[-1])) elif name == "gh-339-1": builder = mesh_data.GmshMeshBuilder3D("gh-339.msh") order = 1 # NOTE: We're definitely not evaluating the bilinear forms accurately # in that case, the mappings are very non-constant. # It's kind of surprising that WADG manages to make a 15-digit inverse, # but empirically it seems to. elif name == "gh-339-1-overint": builder = mesh_data.GmshMeshBuilder3D("gh-339.msh") order = 1 overintegrate = True elif name == "gh-339-4": builder = mesh_data.GmshMeshBuilder3D("gh-339.msh") else: raise ValueError(f"unknown geometry name: {name}") # }}} # {{{ inv(m) @ m == id from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution) dcoll = make_discretization_collection( actx, mesh, discr_tag_to_group_factory={ dof_desc.DISCR_TAG_BASE: ( InterpolatoryEdgeClusteredGroupFactory(order)), dof_desc.DISCR_TAG_QUAD: ( QuadratureGroupFactory(order)) }) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # {{{ compute inverse mass def f(x): return actx.np.cos(4.0 * x[0]) x_volm = actx.thaw(volume_discr.nodes()) f_volm = f(x_volm) if not overintegrate: dd = dof_desc.DD_VOLUME_ALL f_inv = op.inverse_mass( dcoll, op.mass(dcoll, dd, f_volm) ) else: dd_base_vol = dof_desc.as_dofdesc( dof_desc.DTAG_VOLUME_ALL, dof_desc.DISCR_TAG_BASE) dd_quad_vol = dof_desc.as_dofdesc( dof_desc.DTAG_VOLUME_ALL, dof_desc.DISCR_TAG_QUAD) f_inv = op.inverse_mass( dcoll, op.mass(dcoll, dd_quad_vol, op.project(dcoll, dd_base_vol, dd_quad_vol, f_volm))) inv_error = actx.to_numpy( op.norm(dcoll, f_volm - f_inv, 2) / op.norm(dcoll, f_volm, 2)) # }}} # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(dcoll) eoc.add_data_point(actx.to_numpy(h_max), inv_error) logger.info("inverse mass error\n%s", str(eoc)) # NOTE: both cases give 1.0e-16-ish at the moment, but just to be on the # safe side, choose a slightly larger tolerance assert eoc.max_error() < 1.0e-14 # }}} # }}} # {{{ surface face normal orthogonality @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "spheroid"]) def test_face_normal_surface(actx_factory, mesh_name): """Check that face normals are orthogonal to the surface normal""" actx = actx_factory() # {{{ geometry if mesh_name == "2-1-ellipse": builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif mesh_name == "spheroid": builder = mesh_data.SpheroidMeshBuilder() else: raise ValueError(f"unknown mesh name: {mesh_name}") order = 4 mesh = builder.get_mesh(builder.resolutions[0], order) dcoll = make_discretization_collection(actx, mesh, order=order) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # }}} # {{{ Compute surface and face normals from meshmode.discretization.connection import FACE_RESTR_INTERIOR dv = dof_desc.DD_VOLUME_ALL df = dof_desc.as_dofdesc(FACE_RESTR_INTERIOR) ambient_dim = mesh.ambient_dim surf_normal = op.project( dcoll, dv, df, geometry.normal(actx, dcoll, dd=dv) ) surf_normal = surf_normal / actx.np.sqrt(sum(surf_normal**2)) face_normal_i = geometry.normal(actx, dcoll, df) face_normal_e = dcoll.opposite_face_connection( dof_desc.BoundaryDomainTag( dof_desc.FACE_RESTR_INTERIOR, dof_desc.VTAG_ALL) )(face_normal_i) if ambient_dim == 3: # NOTE: there's only one face tangent in 3d face_tangent = ( geometry.pseudoscalar(actx, dcoll, dd=df) / geometry.area_element(actx, dcoll, dd=df) ).as_vector(dtype=object) # }}} # {{{ checks def _eval_error(x): return op.norm(dcoll, x, np.inf, dd=df) rtol = 1.0e-14 # check interpolated surface normal is orthogonal to face normal error = _eval_error(surf_normal.dot(face_normal_i)) logger.info("error[n_dot_i]: %.5e", error) assert error < rtol # check angle between two neighboring elements error = _eval_error(face_normal_i.dot(face_normal_e) + 1.0) logger.info("error[i_dot_e]: %.5e", error) assert error > rtol # check orthogonality with face tangent if ambient_dim == 3: error = _eval_error(face_tangent.dot(face_normal_i)) logger.info("error[t_dot_i]: %.5e", error) assert error < 5 * rtol # }}} # }}} # {{{ diff operator @pytest.mark.parametrize("dim", [1, 2, 3]) def test_tri_diff_mat(actx_factory, dim, order=4): """Check differentiation matrix along the coordinate axes on a disk Uses sines as the function to differentiate. """ actx = actx_factory() from pytools.convergence import EOCRecorder axis_eoc_recs = [EOCRecorder() for axis in range(dim)] def f(x, axis): return actx.np.sin(3*x[axis]) def df(x, axis): return 3*actx.np.cos(3*x[axis]) for n in [4, 8, 16]: mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(n,)*dim, order=4) dcoll = make_discretization_collection(actx, mesh, order=4) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) x = actx.thaw(volume_discr.nodes()) for axis in range(dim): df_num = op.local_grad(dcoll, f(x, axis))[axis] df_volm = df(x, axis) linf_error = flat_norm(df_num - df_volm, ord=np.inf) axis_eoc_recs[axis].add_data_point(1/n, actx.to_numpy(linf_error)) for axis, eoc_rec in enumerate(axis_eoc_recs): logger.info("axis %d\n%s", axis, eoc_rec) assert eoc_rec.order_estimate() > order - 0.25 # }}} # {{{ divergence theorem @pytest.mark.parametrize( "case", ["circle", "tp_box2", "tp_box3", "gh-403", "gh-339"]) def test_gauss_theorem(actx_factory, case, visualize=False): """Verify Gauss's theorem explicitly on a mesh""" pytest.importorskip("meshpy") order = 2 use_overint = False if case == "circle": from meshpy.geometry import GeometryBuilder, make_circle from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) elif case == "gh-403": # https://github.com/inducer/meshmode/issues/403 from meshmode.mesh.io import read_gmsh mesh = read_gmsh("gh-403.msh") elif case == "gh-339": # https://github.com/inducer/grudge/issues/339 from meshmode.mesh.io import read_gmsh mesh = read_gmsh("gh-339.msh") order = 1 use_overint = True elif case.startswith("tp_box"): dim = int(case[-1]) mesh = mgen.generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(4,)*dim, group_cls=TensorProductElementGroup) else: raise ValueError(f"unknown case: {case}") from meshmode.mesh import BTAG_ALL actx = actx_factory() dcoll = make_discretization_collection( actx, mesh, discr_tag_to_group_factory={ dof_desc.DISCR_TAG_BASE: ( InterpolatoryEdgeClusteredGroupFactory(order)), dof_desc.DISCR_TAG_QUAD: ( QuadratureGroupFactory(order)) }) volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) x_volm = actx.thaw(volm_disc.nodes()) def f(x): if len(x) == 3: x0, x1, x2 = x elif len(x) == 2: x0, x1 = x x2 = 0 else: raise ValueError("unsupported dimensionality") return flat_obj_array( actx.np.sin(3*x0) + actx.np.cos(3*x1) + 2*actx.np.cos(2*x2), actx.np.sin(2*x0) + actx.np.cos(x1) + 4*actx.np.cos(0.5*x2), actx.np.sin(1*x0) + actx.np.cos(2*x1) + 3*actx.np.cos(0.8*x2), )[:dcoll.ambient_dim] f_volm = f(x_volm) if not use_overint: div_f = op.local_div(dcoll, f_volm) int_1 = op.integral(dcoll, "vol", div_f) prj_f = op.project(dcoll, "vol", BTAG_ALL, f_volm) normal = geometry.normal(actx, dcoll, BTAG_ALL) f_dot_n = prj_f.dot(normal) int_2 = op.integral(dcoll, BTAG_ALL, f_dot_n) else: dd_base_vol = dof_desc.as_dofdesc( dof_desc.DTAG_VOLUME_ALL, dof_desc.DISCR_TAG_BASE) dd_quad_vol = dof_desc.as_dofdesc( dof_desc.DTAG_VOLUME_ALL, dof_desc.DISCR_TAG_QUAD) dd_quad_bd = dof_desc.as_dofdesc(BTAG_ALL, dof_desc.DISCR_TAG_QUAD) div_f = op.local_div( dcoll, dd_quad_vol, op.project(dcoll, dd_base_vol, dd_quad_vol, f_volm)) int_1 = op.integral(dcoll, dd_quad_vol, div_f) prj_f = op.project(dcoll, "vol", dd_quad_bd, f_volm) normal = geometry.normal(actx, dcoll, dd_quad_bd) f_dot_n = prj_f.dot(normal) int_2 = op.integral(dcoll, dd_quad_bd, f_dot_n) if visualize: from grudge.shortcuts import make_boundary_visualizer, make_visualizer vis = make_visualizer(dcoll) bvis = make_boundary_visualizer(dcoll) vis.write_vtk_file( f"gauss-thm-{case}-vol.vtu", [("div_f", div_f),]) bvis.write_vtk_file( f"gauss-thm-{case}-bdry.vtu", [ ("f_dot_n", f_dot_n), ("normal", normal), ]) assert abs(int_1 - int_2) < 1e-13 @pytest.mark.parametrize("mesh_name", ["2-1-ellipse", "2-1-spheroid"]) def test_surface_divergence_theorem(actx_factory, mesh_name, visualize=False): r"""Check the surface divergence theorem. .. math:: \int_Sigma \phi \nabla_i f_i = \int_\Sigma \nabla_i \phi f_i + \int_\Sigma \kappa \phi f_i n_i + \int_{\partial \Sigma} \phi f_i m_i where :math:`n_i` is the surface normal and :class:`m_i` is the face normal (which should be orthogonal to both the surface normal and the face tangent). """ actx = actx_factory() # {{{ cases if mesh_name == "2-1-ellipse": builder = mesh_data.EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) elif mesh_name == "2-1-spheroid": builder = mesh_data.SpheroidMeshBuilder(radius=3.1, aspect_ratio=2.0) elif mesh_name == "circle": builder = mesh_data.EllipseMeshBuilder(radius=1.0, aspect_ratio=1.0) elif mesh_name == "starfish": builder = mesh_data.StarfishMeshBuilder() elif mesh_name == "sphere": builder = mesh_data.SphereMeshBuilder(radius=1.0) else: raise ValueError(f"unknown mesh name: {mesh_name}") # }}} # {{{ convergence def f(x): return flat_obj_array( actx.np.sin(3*x[1]) + actx.np.cos(3*x[0]) + 1.0, actx.np.sin(2*x[0]) + actx.np.cos(x[1]), 3.0 * actx.np.cos(x[0] / 2) + actx.np.cos(x[1]), )[:ambient_dim] from pytools.convergence import EOCRecorder eoc_global = EOCRecorder() eoc_local = EOCRecorder() theta = np.pi / 3.33 ambient_dim = builder.ambient_dim if ambient_dim == 2: mesh_rotation = np.array([ [np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)], ]) else: mesh_rotation = np.array([ [1.0, 0.0, 0.0], [0.0, np.cos(theta), -np.sin(theta)], [0.0, np.sin(theta), np.cos(theta)], ]) order = 4 mesh_offset = np.array([0.33, -0.21, 0.0])[:ambient_dim] for i, resolution in enumerate(builder.resolutions): from meshmode.discretization.connection import FACE_RESTR_ALL from meshmode.mesh.processing import affine_map mesh = builder.get_mesh(resolution, order) mesh = affine_map(mesh, A=mesh_rotation, b=mesh_offset) from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory qtag = dof_desc.DISCR_TAG_QUAD dcoll = make_discretization_collection( actx, mesh, order=order, discr_tag_to_group_factory={ qtag: QuadratureSimplexGroupFactory(2 * order) } ) volume = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) logger.info("ndofs: %d", volume.ndofs) logger.info("nelements: %d", volume.mesh.nelements) dd = dof_desc.DD_VOLUME_ALL dq = dd.with_discr_tag(qtag) df = dof_desc.as_dofdesc(FACE_RESTR_ALL) ambient_dim = dcoll.ambient_dim # variables f_num = f(actx.thaw(dcoll.nodes(dd=dd))) f_quad_num = f(actx.thaw(dcoll.nodes(dd=dq))) kappa = geometry.summed_curvature(actx, dcoll, dd=dq) normal = geometry.normal(actx, dcoll, dd=dq) face_normal = geometry.normal(actx, dcoll, df) face_f = op.project(dcoll, dd, df, f_num) # operators stiff = op.mass(dcoll, sum(op.local_d_dx(dcoll, i, f_num_i) for i, f_num_i in enumerate(f_num))) stiff_t = sum(op.weak_local_d_dx(dcoll, i, f_num_i) for i, f_num_i in enumerate(f_num)) kterm = op.mass(dcoll, dq, kappa * f_quad_num.dot(normal)) flux = op.face_mass(dcoll, face_f.dot(face_normal)) # sum everything up op_global = op.nodal_sum(dcoll, dd, stiff - (stiff_t + kterm)) op_local = op.elementwise_sum(dcoll, dd, stiff - (stiff_t + kterm + flux)) # compute max element size from grudge.dt_utils import h_max_from_volume h_max = actx.to_numpy(h_max_from_volume(dcoll)) err_global = actx.to_numpy(abs(op_global)) err_local = actx.to_numpy(op.norm(dcoll, op_local, np.inf)) logger.info("errors: h_max %.5e global %.5e local %.5e", h_max, err_global, err_local) eoc_global.add_data_point(h_max, err_global) eoc_local.add_data_point(h_max, err_local) if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll) filename = f"surface_divergence_theorem_{mesh_name}_{i:04d}.vtu" vis.write_vtk_file(filename, [ ("r", actx.np.log10(op_local)) ], overwrite=True) # }}} exp_order = order - 0.5 logger.info("eoc_global:\n%s", str(eoc_global)) logger.info("eoc_local:\n%s", str(eoc_local)) assert eoc_global.max_error() < 1.0e-12 \ or eoc_global.order_estimate() > exp_order - 0.5 assert eoc_local.max_error() < 1.0e-12 \ or eoc_local.order_estimate() > exp_order - 0.5 # }}} # {{{ models: advection @pytest.mark.parametrize(("mesh_name", "mesh_pars"), [ ("segment", [8, 16, 32]), ("disk", [0.07, 0.02, 0.01]), ("rect2", [4, 8]), ("rect3", [4, 6]), ("warped2", [4, 8]), ]) @pytest.mark.parametrize("op_type", ["strong", "weak"]) @pytest.mark.parametrize("flux_type", ["central"]) @pytest.mark.parametrize("order", [3, 4, 5]) # test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)' def test_convergence_advec(actx_factory, mesh_name, mesh_pars, op_type, flux_type, order, visualize=False): """Test whether 2D advection actually converges""" actx = actx_factory() from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for mesh_par in mesh_pars: if mesh_name == "segment": mesh = mgen.generate_box_mesh( [np.linspace(-1.0, 1.0, mesh_par)], order=order) dim = 1 dt_factor = 1.0 elif mesh_name == "disk": pytest.importorskip("meshpy") from meshpy.geometry import GeometryBuilder, make_circle from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info, max_volume=mesh_par) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) dim = 2 dt_factor = 4 elif mesh_name.startswith("rect"): dim = int(mesh_name[-1:]) mesh = mgen.generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(mesh_par,)*dim, order=4) if dim == 2: dt_factor = 4 elif dim == 3: dt_factor = 2 else: raise ValueError(f"dt_factor not known for {dim}d") elif mesh_name.startswith("warped"): dim = int(mesh_name[-1:]) mesh = mgen.generate_warped_rect_mesh(dim, order=order, nelements_side=mesh_par) if dim == 2: dt_factor = 4 elif dim == 3: dt_factor = 2 else: raise ValueError(f"dt_factor not known for {dim}d") else: raise ValueError("invalid mesh name: " + mesh_name) v = np.array([0.27, 0.31, 0.1])[:dim] norm_v = la.norm(v) def f(x): return actx.np.sin(10*x) def u_analytic(x, t=0, v=v, norm_v=norm_v): return f(-v.dot(x)/norm_v + t*norm_v) from meshmode.mesh import BTAG_ALL from grudge.models.advection import ( StrongAdvectionOperator, WeakAdvectionOperator, ) dcoll = make_discretization_collection(actx, mesh, order=order) op_class = {"strong": StrongAdvectionOperator, "weak": WeakAdvectionOperator}[op_type] adv_operator = op_class(dcoll, v, inflow_u=lambda t, dcoll=dcoll: u_analytic( actx.thaw(dcoll.nodes(dd=BTAG_ALL)), t=t ), flux_type=flux_type) nodes = actx.thaw(dcoll.nodes()) u = u_analytic(nodes, t=0) def rhs(t, u, adv_operator=adv_operator): return adv_operator.operator(t, u) compiled_rhs = actx.compile(rhs) if dim == 3: final_time = 0.1 else: final_time = 0.2 from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(dcoll, dim=dcoll.ambient_dim) dt = actx.to_numpy(dt_factor * h_max/order**2) nsteps = (final_time // dt) + 1 tol = 1e-14 dt = final_time/nsteps + tol from grudge.shortcuts import compiled_lsrk45_step, make_visualizer vis = make_visualizer(dcoll) step = 0 t = 0 while t < final_time - tol: step += 1 logger.debug("[%04d] t = %.5f", step, t) u = compiled_lsrk45_step(actx, u, t, dt, compiled_rhs) if visualize: vis.write_vtk_file( f"fld-{mesh_par}-{step:04d}vtu" % (mesh_par, step), [("u", u)] ) t += dt if t + dt >= final_time - tol: dt = final_time-t error_l2 = op.norm( dcoll, u - u_analytic(nodes, t=t), 2 ) logger.info("h_max %.5e error %.5e", actx.to_numpy(h_max), error_l2) eoc_rec.add_data_point(actx.to_numpy(h_max), actx.to_numpy(error_l2)) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) if mesh_name.startswith("warped"): # NOTE: curvilinear meshes are hard assert eoc_rec.order_estimate() > order - 0.5 else: assert eoc_rec.order_estimate() > order # }}} # {{{ models: maxwell @pytest.mark.parametrize("order", [3, 4, 5]) def test_convergence_maxwell(actx_factory, order): """Test whether 3D Maxwell's actually converges""" actx = actx_factory() from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() dims = 3 ns = [4, 6, 8] for n in ns: mesh = mgen.generate_regular_rect_mesh( a=(0.0,)*dims, b=(1.0,)*dims, nelements_per_axis=(n,)*dims) dcoll = make_discretization_collection(actx, mesh, order=order) epsilon = 1 mu = 1 from grudge.models.em import get_rectangular_cavity_mode def analytic_sol(x, t=0): return get_rectangular_cavity_mode(actx, x, t, 1, (1, 2, 2)) nodes = actx.thaw(dcoll.nodes()) fields = analytic_sol(nodes, t=0) from grudge.models.em import MaxwellOperator maxwell_operator = MaxwellOperator( dcoll, epsilon, mu, flux_type=0.5, dimensions=dims ) maxwell_operator.check_bc_coverage(mesh) def rhs(t, w, maxwell_operator=maxwell_operator): return maxwell_operator.operator(t, w) dt = actx.to_numpy(maxwell_operator.estimate_rk4_timestep(actx, dcoll)) final_t = dt * 5 nsteps = int(final_t/dt) from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("w", dt, fields, rhs) logger.info("dt %.5e nsteps %5d", dt, nsteps) esc = None step = 0 for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" esc = event.state_component step += 1 logger.debug("[%04d] t = %.5e", step, event.t) sol = analytic_sol(nodes, t=step * dt) total_error = op.norm(dcoll, esc - sol, 2) eoc_rec.add_data_point(1.0/n, actx.to_numpy(total_error)) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order # }}} # {{{ models: variable coefficient advection oversampling @pytest.mark.parametrize("order", [2, 3, 4]) def test_improvement_quadrature(actx_factory, order): """Test whether quadrature improves things and converges""" from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory from meshmode.mesh import BTAG_ALL from pytools.convergence import EOCRecorder from grudge.models.advection import VariableCoefficientAdvectionOperator actx = actx_factory() dims = 2 def gaussian_mode(x): source_width = 0.1 return actx.np.exp(-np.dot(x, x) / source_width**2) def conv_test(descr, use_quad): logger.info("-" * 75) logger.info(descr) logger.info("-" * 75) eoc_rec = EOCRecorder() if use_quad: qtag = dof_desc.DISCR_TAG_QUAD else: qtag = None ns = [20, 25] for n in ns: mesh = mgen.generate_regular_rect_mesh( a=(-0.5,)*dims, b=(0.5,)*dims, nelements_per_axis=(n,)*dims, order=order) if use_quad: discr_tag_to_group_factory = { qtag: QuadratureSimplexGroupFactory(order=4*order) } else: discr_tag_to_group_factory = {} dcoll = make_discretization_collection( actx, mesh, order=order, discr_tag_to_group_factory=discr_tag_to_group_factory ) nodes = actx.thaw(dcoll.nodes()) def zero_inflow(dtag, t=0, dcoll=dcoll): dd = dof_desc.as_dofdesc(dtag, qtag) return dcoll.discr_from_dd(dd).zeros(actx) adv_op = VariableCoefficientAdvectionOperator( dcoll, flat_obj_array(-1*nodes[1], nodes[0]), inflow_u=lambda t: zero_inflow(BTAG_ALL, t=t), flux_type="upwind", quad_tag=qtag ) total_error = op.norm( dcoll, adv_op.operator(0, gaussian_mode(nodes)), 2 ) eoc_rec.add_data_point(1.0/n, actx.to_numpy(total_error)) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history]) eoc, errs = conv_test("no quadrature", False) q_eoc, q_errs = conv_test("with quadrature", True) assert q_eoc > eoc assert (q_errs < errs).all() assert q_eoc > order - 0.1 # }}} # {{{ bessel @pytest.mark.xfail def test_bessel(actx_factory): actx = actx_factory() dims = 2 mesh = mgen.generate_regular_rect_mesh( a=(0.1,)*dims, b=(1.0,)*dims, nelements_per_axis=(8,)*dims) dcoll = make_discretization_collection(actx, mesh, order=3) nodes = actx.thaw(dcoll.nodes()) r = actx.np.sqrt(nodes[0]**2 + nodes[1]**2) # FIXME: Bessel functions need to brought out of the symbolic # layer. Related issue: https://github.com/inducer/grudge/issues/93 def bessel_j(actx, n, r): from grudge import bind, sym # pylint: disable=no-name-in-module return bind(dcoll, sym.bessel_j(n, sym.var("r")))(actx, r=r) # https://dlmf.nist.gov/10.6.1 n = 3 bessel_zero = (bessel_j(actx, n+1, r) + bessel_j(actx, n-1, r) - 2*n/r * bessel_j(actx, n, r)) z = op.norm(dcoll, bessel_zero, 2) assert z < 1e-15 # }}} # {{{ test norms @pytest.mark.parametrize("p", [2, np.inf]) def test_norm_real(actx_factory, p): actx = actx_factory() dim = 2 mesh = mgen.generate_regular_rect_mesh( a=(0,)*dim, b=(1,)*dim, nelements_per_axis=(8,)*dim, order=1) dcoll = make_discretization_collection(actx, mesh, order=4) nodes = actx.thaw(dcoll.nodes()) norm = op.norm(dcoll, nodes[0], p) if p == 2: ref_norm = (1/3)**0.5 elif p == np.inf: ref_norm = 1 else: raise AssertionError("unsupported p") logger.info("norm: %.5e %.5e", norm, ref_norm) assert abs(norm-ref_norm) / abs(ref_norm) < 1e-13 @pytest.mark.parametrize("p", [2, np.inf]) def test_norm_complex(actx_factory, p): actx = actx_factory() dim = 2 mesh = mgen.generate_regular_rect_mesh( a=(0,)*dim, b=(1,)*dim, nelements_per_axis=(8,)*dim, order=1) dcoll = make_discretization_collection(actx, mesh, order=4) nodes = actx.thaw(dcoll.nodes()) norm = op.norm(dcoll, (1 + 1j)*nodes[0], p) if p == 2: ref_norm = (2/3)**0.5 elif p == np.inf: ref_norm = 2**0.5 else: raise AssertionError("unsupported p") logger.info("norm: %.5e %.5e", norm, ref_norm) assert abs(norm-ref_norm) / abs(ref_norm) < 1e-13 @pytest.mark.parametrize("p", [2, np.inf]) def test_norm_obj_array(actx_factory, p): actx = actx_factory() dim = 2 mesh = mgen.generate_regular_rect_mesh( a=(0,)*dim, b=(1,)*dim, nelements_per_axis=(8,)*dim, order=1) dcoll = make_discretization_collection(actx, mesh, order=4) nodes = actx.thaw(dcoll.nodes()) norm = op.norm(dcoll, nodes, p) if p == 2: ref_norm = (dim/3)**0.5 elif p == np.inf: ref_norm = 1 else: raise AssertionError("unsupported p") logger.info("norm: %.5e %.5e", norm, ref_norm) assert abs(norm-ref_norm) / abs(ref_norm) < 1e-14 # }}} # {{{ empty boundaries def test_empty_boundary(actx_factory): # https://github.com/inducer/grudge/issues/54 from meshmode.mesh import BTAG_NONE actx = actx_factory() dim = 2 mesh = mgen.generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(8,)*dim, order=4) dcoll = make_discretization_collection(actx, mesh, order=4) normal = geometry.normal(actx, dcoll, BTAG_NONE) from meshmode.dof_array import DOFArray for component in normal: assert isinstance(component, DOFArray) assert len(component) == len(dcoll.discr_from_dd(BTAG_NONE).groups) # }}} # {{{ multi-volume def test_multiple_independent_volumes(actx_factory): dim = 2 actx = actx_factory() mesh1 = mgen.generate_regular_rect_mesh( a=(-2,)*dim, b=(-1,)*dim, nelements_per_axis=(4,)*dim, order=4) mesh2 = mgen.generate_regular_rect_mesh( a=(1,)*dim, b=(2,)*dim, nelements_per_axis=(8,)*dim, order=4) volume_to_mesh = { "vol1": mesh1, "vol2": mesh2} make_discretization_collection(actx, volume_to_mesh, order=4) # }}} # You can test individual routines by typing # $ python test_grudge.py 'test_routine()' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: pytest.main([__file__]) # vim: fdm=marker