__copyright__ = """ Copyright (C) 2020 Andreas Kloeckner Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import numpy as np import numpy.linalg as la # noqa import pyopencl as cl import pyopencl.tools as cl_tools from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa from pytools.obj_array import flat_obj_array import grudge.geometry as geo import grudge.op as op from grudge.array_context import PyOpenCLArrayContext from grudge.discretization import make_discretization_collection from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD, as_dofdesc from grudge.shortcuts import make_visualizer, rk4_step logger = logging.getLogger(__name__) # {{{ wave equation bits def wave_flux(actx, dcoll, c, w_tpair): dd = w_tpair.dd dd_quad = dd.with_discr_tag(DISCR_TAG_QUAD) u = w_tpair[0] v = w_tpair[1:] normal = geo.normal(actx, dcoll, dd) flux_weak = flat_obj_array( np.dot(v.avg, normal), normal*u.avg, ) # upwind flux_weak += flat_obj_array( 0.5*(u.ext-u.int), 0.5*normal*np.dot(normal, v.ext-v.int), ) # FIXME this flux is only correct for continuous c dd_allfaces_quad = dd_quad.with_domain_tag("all_faces") c_quad = op.project(dcoll, "vol", dd_quad, c) flux_quad = op.project(dcoll, dd, dd_quad, flux_weak) return op.project(dcoll, dd_quad, dd_allfaces_quad, c_quad*flux_quad) def wave_operator(actx, dcoll, c, w): u = w[0] v = w[1:] dir_u = op.project(dcoll, "vol", BTAG_ALL, u) dir_v = op.project(dcoll, "vol", BTAG_ALL, v) dir_bval = flat_obj_array(dir_u, dir_v) dir_bc = flat_obj_array(-dir_u, dir_v) dd_quad = as_dofdesc("vol", DISCR_TAG_QUAD) c_quad = op.project(dcoll, "vol", dd_quad, c) w_quad = op.project(dcoll, "vol", dd_quad, w) u_quad = w_quad[0] v_quad = w_quad[1:] dd_allfaces_quad = as_dofdesc("all_faces", DISCR_TAG_QUAD) return ( op.inverse_mass( dcoll, flat_obj_array( -op.weak_local_div(dcoll, dd_quad, c_quad*v_quad), -op.weak_local_grad(dcoll, dd_quad, c_quad*u_quad) # pylint: disable=invalid-unary-operand-type ) + op.face_mass( dcoll, dd_allfaces_quad, wave_flux( actx, dcoll, c=c, w_tpair=op.bdry_trace_pair(dcoll, BTAG_ALL, interior=dir_bval, exterior=dir_bc) ) + sum( wave_flux(actx, dcoll, c=c, w_tpair=tpair) for tpair in op.interior_trace_pairs(dcoll, w) ) ) ) ) # }}} def estimate_rk4_timestep(actx, dcoll, c): from grudge.dt_utils import characteristic_lengthscales local_dts = characteristic_lengthscales(actx, dcoll) / c return op.nodal_min(dcoll, "vol", local_dts) def bump(actx, dcoll, t=0, width=0.05, center=None): if center is None: center = np.array([0.2, 0.35, 0.1]) center = center[:dcoll.dim] source_omega = 3 nodes = actx.thaw(dcoll.nodes()) center_dist = flat_obj_array([ nodes[i] - center[i] for i in range(dcoll.dim) ]) return ( np.cos(source_omega*t) * actx.np.exp( -np.dot(center_dist, center_dist) / width**2)) def main(ctx_factory, dim=2, order=3, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) allocator = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) actx = PyOpenCLArrayContext(queue, allocator=allocator) nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(nel_1d,)*dim) logger.info("%d elements", mesh.nelements) from meshmode.discretization.poly_element import ( QuadratureSimplexGroupFactory, default_simplex_group_factory, ) dcoll = make_discretization_collection( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory(base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(3*order), } ) # bounded above by 1 c = 0.2 + 0.8*bump(actx, dcoll, center=np.zeros(3), width=0.5) dt = actx.to_numpy(0.5 * estimate_rk4_timestep(actx, dcoll, c=1)) fields = flat_obj_array( bump(actx, dcoll, ), [dcoll.zeros(actx) for i in range(dcoll.dim)] ) vis = make_visualizer(dcoll) def rhs(t, w): return wave_operator(actx, dcoll, c=c, w=w) logger.info("dt = %g", dt) t = 0 t_final = 3 istep = 0 while t < t_final: fields = rk4_step(fields, t, dt, rhs) l2norm = actx.to_numpy(op.norm(dcoll, fields[0], 2)) if istep % 10 == 0: linfnorm = actx.to_numpy(op.norm(dcoll, fields[0], np.inf)) nodalmax = actx.to_numpy(op.nodal_max(dcoll, "vol", fields[0])) nodalmin = actx.to_numpy(op.nodal_min(dcoll, "vol", fields[0])) logger.info("step: %d t: %.8e L2: %.8e Linf: %.8e " "sol max: %.8e sol min: %.8e", istep, t, l2norm, linfnorm, nodalmax, nodalmin) if visualize: vis.write_vtk_file( f"fld-wave-eager-var-velocity-{istep:04d}.vtu", [ ("c", c), ("u", fields[0]), ("v", fields[1:]), ] ) t += dt istep += 1 # NOTE: These are here to ensure the solution is bounded for the # time interval specified assert l2norm < 1 if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--dim", default=2, type=int) parser.add_argument("--order", default=3, type=int) parser.add_argument("--visualize", action="store_true") args = parser.parse_args() logging.basicConfig(level=logging.INFO) main(cl.create_some_context, dim=args.dim, order=args.order, visualize=args.visualize) # vim: foldmethod=marker