__copyright__ = """ Copyright (C) 2007 Andreas Kloeckner Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import os import numpy as np import numpy.linalg as la import pyopencl as cl import pyopencl.tools as cl_tools from arraycontext import flatten from meshmode.mesh import BTAG_ALL import grudge.dof_desc as dof_desc import grudge.op as op from grudge.array_context import PyOpenCLArrayContext logger = logging.getLogger(__name__) # {{{ plotting (keep in sync with `var-velocity.py`) class Plotter: def __init__(self, actx, dcoll, order, visualize=True, ylim=None): self.actx = actx self.dim = dcoll.ambient_dim self.visualize = visualize if not self.visualize: return if self.dim == 1: import matplotlib.pyplot as pt self.fig = pt.figure(figsize=(8, 8), dpi=300) self.ylim = ylim volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME_ALL) self.x = actx.to_numpy(flatten(volume_discr.nodes()[0], self.actx)) else: from grudge.shortcuts import make_visualizer self.vis = make_visualizer(dcoll) def __call__(self, evt, basename, overwrite=True): if not self.visualize: return if self.dim == 1: u = self.actx.to_numpy(flatten(evt.state_component, self.actx)) filename = f"{basename}.png" if not overwrite and os.path.exists(filename): from meshmode import FileExistsError raise FileExistsError(f"output file '{filename}' already exists") ax = self.fig.gca() ax.plot(self.x, u, "-") ax.plot(self.x, u, "k.") if self.ylim is not None: ax.set_ylim(self.ylim) ax.set_xlabel("$x$") ax.set_ylabel("$u$") ax.set_title(f"t = {evt.t:.2f}") self.fig.savefig(filename) self.fig.clf() else: self.vis.write_vtk_file(f"{basename}.vtu", [ ("u", evt.state_component) ], overwrite=overwrite) # }}} def main(ctx_factory, dim=2, order=4, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) allocator = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) actx = PyOpenCLArrayContext(queue, allocator=allocator) # {{{ parameters # domain [-d/2, d/2]^dim d = 1.0 # number of points in each dimension npoints = 20 # final time final_time = 1.0 # velocity field c = np.array([0.5] * dim) norm_c = la.norm(c) # flux flux_type = "central" # }}} # {{{ discretization from meshmode.mesh.generation import generate_box_mesh mesh = generate_box_mesh( [np.linspace(-d/2, d/2, npoints) for _ in range(dim)], order=order) from grudge.discretization import make_discretization_collection dcoll = make_discretization_collection(actx, mesh, order=order) # }}} # {{{ weak advection operator def f(x): return actx.np.sin(3 * x) def u_analytic(x, t=0): return f(-np.dot(c, x) / norm_c + t * norm_c) from grudge.models.advection import WeakAdvectionOperator adv_operator = WeakAdvectionOperator( dcoll, c, inflow_u=lambda t: u_analytic( actx.thaw(dcoll.nodes(dd=BTAG_ALL)), t=t ), flux_type=flux_type ) nodes = actx.thaw(dcoll.nodes()) u = u_analytic(nodes, t=0) def rhs(t, u): return adv_operator.operator(t, u) dt = actx.to_numpy(adv_operator.estimate_rk4_timestep(actx, dcoll, fields=u)) logger.info("Timestep size: %g", dt) # }}} # {{{ time stepping from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", float(dt), u, rhs) plot = Plotter(actx, dcoll, order, visualize=visualize, ylim=[-1.1, 1.1]) step = 0 norm_u = 0.0 for event in dt_stepper.run(t_end=final_time): if not isinstance(event, dt_stepper.StateComputed): continue if step % 10 == 0: norm_u = actx.to_numpy(op.norm(dcoll, event.state_component, 2)) plot(event, f"fld-weak-{step:04d}") step += 1 logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u) # NOTE: These are here to ensure the solution is bounded for the # time interval specified assert norm_u < 1 # }}} if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--dim", default=2, type=int) parser.add_argument("--order", default=4, type=int) parser.add_argument("--visualize", action="store_true") args = parser.parse_args() logging.basicConfig(level=logging.INFO) main(cl.create_some_context, dim=args.dim, order=args.order, visualize=args.visualize)