__copyright__ = """ Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la from meshmode import _acf # noqa: F401 from meshmode.dof_array import flatten, thaw from meshmode.array_context import ( # noqa pytest_generate_tests_for_pyopencl_array_context as pytest_generate_tests) import meshmode.mesh.generation as mgen from pytools.obj_array import flat_obj_array, make_obj_array import grudge.op as op from grudge import DiscretizationCollection, sym, bind import grudge.dof_desc as dof_desc import pytest import logging logger = logging.getLogger(__name__) # {{{ mass operator @pytest.mark.parametrize("ambient_dim", [1, 2, 3]) @pytest.mark.parametrize("quad_tag", [dof_desc.QTAG_NONE, "OVSMP"]) def test_mass_mat_trig(actx_factory, ambient_dim, quad_tag): """Check the integral of some trig functions on an interval using the mass matrix. """ actx = actx_factory() nelements = 17 order = 4 a = -4.0 * np.pi b = +9.0 * np.pi true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory dd_quad = dof_desc.DOFDesc(dof_desc.DTAG_VOLUME_ALL, quad_tag) if quad_tag is dof_desc.QTAG_NONE: quad_tag_to_group_factory = {} else: quad_tag_to_group_factory = { quad_tag: QuadratureSimplexGroupFactory(order=2*order) } mesh = mgen.generate_regular_rect_mesh( a=(a,)*ambient_dim, b=(b,)*ambient_dim, n=(nelements,)*ambient_dim, order=1 ) dcoll = DiscretizationCollection( actx, mesh, order=order, quad_tag_to_group_factory=quad_tag_to_group_factory ) def f(x): return actx.np.sin(x[0])**2 volm_disc = dcoll.discr_from_dd(dof_desc.DD_VOLUME) x_volm = thaw(actx, volm_disc.nodes()) f_volm = f(x_volm) ones_volm = volm_disc.zeros(actx) + 1 quad_disc = dcoll.discr_from_dd(dd_quad) x_quad = thaw(actx, quad_disc.nodes()) f_quad = f(x_quad) ones_quad = quad_disc.zeros(actx) + 1 mop_1 = op.mass_operator(dcoll, dd_quad, f_quad) num_integral_1 = np.dot(actx.to_numpy(flatten(ones_volm)), actx.to_numpy(flatten(mop_1))) err_1 = abs(num_integral_1 - true_integral) assert err_1 < 1e-9, err_1 mop_2 = op.mass_operator(dcoll, dd_quad, ones_quad) num_integral_2 = np.dot(actx.to_numpy(flatten(f_volm)), actx.to_numpy(flatten(mop_2))) err_2 = abs(num_integral_2 - true_integral) assert err_2 < 1.0e-9, err_2 # }}} # {{{ mass operator on surface def _ellipse_surface_area(radius, aspect_ratio): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html eccentricity = 1.0 - (1/aspect_ratio)**2 if abs(aspect_ratio - 2.0) < 1.0e-14: # NOTE: hardcoded value so we don't need scipy for the test ellip_e = 1.2110560275684594 else: from scipy.special import ellipe # pylint: disable=no-name-in-module ellip_e = ellipe(eccentricity) return 4.0 * radius * ellip_e def _spheroid_surface_area(radius, aspect_ratio): # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area a = 1.0 c = aspect_ratio if a < c: e = np.sqrt(1.0 - (a/c)**2) return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e)) else: e = np.sqrt(1.0 - (c/a)**2) return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e)) @pytest.mark.parametrize("name", [ "2-1-ellipse", "spheroid", "box2d", "box3d" ]) def test_mass_surface_area(actx_factory, name): actx = actx_factory() # {{{ cases if name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio) elif name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio) elif name == "box2d": from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=2) surface_area = 1.0 elif name == "box3d": from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=3) surface_area = 1.0 else: raise ValueError("unknown geometry name: %s" % name) # }}} # {{{ convergence from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) volume_discr = dcoll.discr_from_dd(dof_desc.DD_VOLUME) logger.info("ndofs: %d", volume_discr.ndofs) logger.info("nelements: %d", volume_discr.mesh.nelements) # {{{ compute surface area dd = dof_desc.DD_VOLUME ones_volm = volume_discr.zeros(actx) + 1 mass_weights = op.mass_operator(dcoll, dd, ones_volm) approx_surface_area = np.dot(actx.to_numpy(flatten(ones_volm)), actx.to_numpy(flatten(mass_weights))) logger.info("surface: got {:.5e} / expected {:.5e}".format( approx_surface_area, surface_area)) area_error = abs(approx_surface_area - surface_area) / abs(surface_area) # }}} h_max = bind(dcoll, sym.h_max_from_volume(dcoll.ambient_dim, dim=dcoll.dim, dd=dd))(actx) eoc.add_data_point(h_max, area_error) # }}} logger.info("surface area error\n%s", str(eoc)) assert eoc.max_error() < 3e-13 or eoc.order_estimate() > builder.order # }}} # vim: foldmethod=marker