__copyright__ = """ Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from dataclasses import dataclass from arraycontext import ( thaw, with_container_arithmetic, dataclass_array_container, pytest_generate_tests_for_array_contexts ) from meshmode.dof_array import DOFArray from grudge.array_context import PytestPyOpenCLArrayContextFactory pytest_generate_tests = pytest_generate_tests_for_array_contexts( [PytestPyOpenCLArrayContextFactory]) from grudge import DiscretizationCollection import grudge.op as op from meshmode.dof_array import flatten from pytools.obj_array import make_obj_array import pytest import logging logger = logging.getLogger(__name__) def test_nodal_reductions(actx_factory): actx = actx_factory() from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=1) mesh = builder.get_mesh(4, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) x = thaw(dcoll.nodes(), actx) def f(x): return -actx.np.sin(10*x[0]) def g(x): return actx.np.cos(2*x[0]) def h(x): return -actx.np.tan(5*x[0]) fields = make_obj_array([f(x), g(x), h(x)]) f_ref = actx.to_numpy(flatten(fields[0])) g_ref = actx.to_numpy(flatten(fields[1])) h_ref = actx.to_numpy(flatten(fields[2])) concat_fields = np.concatenate([f_ref, g_ref, h_ref]) for grudge_op, np_op in [(op.nodal_sum, np.sum), (op.nodal_max, np.max), (op.nodal_min, np.min)]: # Componentwise reduction checks assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", fields[0])), np_op(f_ref), rtol=1e-13) assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", fields[1])), np_op(g_ref), rtol=1e-13) assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", fields[2])), np_op(h_ref), rtol=1e-13) # Test nodal reductions work on object arrays assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", fields)), np_op(concat_fields), rtol=1e-13) def test_elementwise_reductions(actx_factory): actx = actx_factory() from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=1) nelements = 4 mesh = builder.get_mesh(nelements, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) x = thaw(dcoll.nodes(), actx) def f(x): return actx.np.sin(x[0]) field = f(x) mins = [] maxs = [] sums = [] for grp_f in field: min_res = np.empty(grp_f.shape) max_res = np.empty(grp_f.shape) sum_res = np.empty(grp_f.shape) for eidx in range(dcoll.mesh.nelements): element_data = actx.to_numpy(grp_f[eidx]) min_res[eidx, :] = np.min(element_data) max_res[eidx, :] = np.max(element_data) sum_res[eidx, :] = np.sum(element_data) mins.append(actx.from_numpy(min_res)) maxs.append(actx.from_numpy(max_res)) sums.append(actx.from_numpy(sum_res)) ref_mins = DOFArray(actx, data=tuple(mins)) ref_maxs = DOFArray(actx, data=tuple(maxs)) ref_sums = DOFArray(actx, data=tuple(sums)) elem_mins = op.elementwise_min(dcoll, field) elem_maxs = op.elementwise_max(dcoll, field) elem_sums = op.elementwise_sum(dcoll, field) assert actx.to_numpy(op.norm(dcoll, elem_mins - ref_mins, np.inf)) < 1.e-15 assert actx.to_numpy(op.norm(dcoll, elem_maxs - ref_maxs, np.inf)) < 1.e-15 assert actx.to_numpy(op.norm(dcoll, elem_sums - ref_sums, np.inf)) < 1.e-15 # {{{ Array container tests @with_container_arithmetic(bcast_obj_array=False, eq_comparison=False, rel_comparison=False) @dataclass_array_container @dataclass(frozen=True) class MyContainer: name: str mass: DOFArray momentum: np.ndarray enthalpy: DOFArray @property def array_context(self): return self.mass.array_context def test_nodal_reductions_with_container(actx_factory): actx = actx_factory() from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=2) mesh = builder.get_mesh(4, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) x = thaw(dcoll.nodes(), actx) def f(x): return -actx.np.sin(10*x[0]) * actx.np.cos(2*x[1]) def g(x): return actx.np.cos(2*x[0]) * actx.np.sin(10*x[1]) def h(x): return -actx.np.tan(5*x[0]) * actx.np.tan(0.5*x[1]) mass = f(x) + g(x) momentum = make_obj_array([f(x)/g(x), h(x)]) enthalpy = h(x) - g(x) ary_container = MyContainer(name="container", mass=mass, momentum=momentum, enthalpy=enthalpy) mass_ref = actx.to_numpy(flatten(mass)) momentum_ref = np.concatenate([actx.to_numpy(mom_i) for mom_i in flatten(momentum)]) enthalpy_ref = actx.to_numpy(flatten(enthalpy)) concat_fields = np.concatenate([mass_ref, momentum_ref, enthalpy_ref]) for grudge_op, np_op in [(op.nodal_sum, np.sum), (op.nodal_max, np.max), (op.nodal_min, np.min)]: assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", ary_container)), np_op(concat_fields), rtol=1e-13) # Check norm reduction assert np.isclose(actx.to_numpy(op.norm(dcoll, ary_container, np.inf)), np.linalg.norm(concat_fields, ord=np.inf), rtol=1e-13) def test_elementwise_reductions_with_container(actx_factory): actx = actx_factory() from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=2) nelements = 4 mesh = builder.get_mesh(nelements, builder.mesh_order) dcoll = DiscretizationCollection(actx, mesh, order=builder.order) x = thaw(dcoll.nodes(), actx) def f(x): return actx.np.sin(x[0]) * actx.np.sin(x[1]) def g(x): return actx.np.cos(x[0]) * actx.np.cos(x[1]) def h(x): return actx.np.cos(x[0]) * actx.np.sin(x[1]) mass = 2*f(x) + 0.5*g(x) momentum = make_obj_array([f(x)/g(x), h(x)]) enthalpy = 3*h(x) - g(x) ary_container = MyContainer(name="container", mass=mass, momentum=momentum, enthalpy=enthalpy) def _get_ref_data(field): mins = [] maxs = [] sums = [] for grp_f in field: min_res = np.empty(grp_f.shape) max_res = np.empty(grp_f.shape) sum_res = np.empty(grp_f.shape) for eidx in range(dcoll.mesh.nelements): element_data = actx.to_numpy(grp_f[eidx]) min_res[eidx, :] = np.min(element_data) max_res[eidx, :] = np.max(element_data) sum_res[eidx, :] = np.sum(element_data) mins.append(actx.from_numpy(min_res)) maxs.append(actx.from_numpy(max_res)) sums.append(actx.from_numpy(sum_res)) min_field = DOFArray(actx, data=tuple(mins)) max_field = DOFArray(actx, data=tuple(maxs)) sums_field = DOFArray(actx, data=tuple(sums)) return min_field, max_field, sums_field min_mass, max_mass, sums_mass = _get_ref_data(mass) min_enthalpy, max_enthalpy, sums_enthalpy = _get_ref_data(enthalpy) min_mom_x, max_mom_x, sums_mom_x = _get_ref_data(momentum[0]) min_mom_y, max_mom_y, sums_mom_y = _get_ref_data(momentum[1]) min_momentum = make_obj_array([min_mom_x, min_mom_y]) max_momentum = make_obj_array([max_mom_x, max_mom_y]) sums_momentum = make_obj_array([sums_mom_x, sums_mom_y]) reference_min = MyContainer( name="Reference min", mass=min_mass, momentum=min_momentum, enthalpy=min_enthalpy ) reference_max = MyContainer( name="Reference max", mass=max_mass, momentum=max_momentum, enthalpy=max_enthalpy ) reference_sum = MyContainer( name="Reference sums", mass=sums_mass, momentum=sums_momentum, enthalpy=sums_enthalpy ) elem_mins = op.elementwise_min(dcoll, ary_container) elem_maxs = op.elementwise_max(dcoll, ary_container) elem_sums = op.elementwise_sum(dcoll, ary_container) assert actx.to_numpy(op.norm(dcoll, elem_mins - reference_min, np.inf)) < 1.e-14 assert actx.to_numpy(op.norm(dcoll, elem_maxs - reference_max, np.inf)) < 1.e-14 assert actx.to_numpy(op.norm(dcoll, elem_sums - reference_sum, np.inf)) < 1.e-14 # }}} # You can test individual routines by typing # $ python test_grudge.py 'test_routine()' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: pytest.main([__file__])