__copyright__ = "Copyright (C) 2007 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ "Maxwell's equation example with fixed material coefficients" from __future__ import division from __future__ import absolute_import from __future__ import print_function import numpy.linalg as la def main(write_output=True): from math import sqrt, pi, exp from os.path import join from grudge.backends import guess_run_context rcon = guess_run_context() epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4*pi*1e-7 # N/A**2. epsilon = 1*epsilon0 mu = 1*mu0 output_dir = "maxwell-2d" import os if not os.access(output_dir, os.F_OK): os.makedirs(output_dir) from grudge.mesh.generator import make_disk_mesh mesh = make_disk_mesh(r=0.5, max_area=1e-3) if rcon.is_head_rank: mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() class CurrentSource: shape = (3,) def __call__(self, x, el): return [0,0,exp(-80*la.norm(x))] order = 3 final_time = 1e-8 discr = rcon.make_discretization(mesh_data, order=order, debug=["cuda_no_plan"]) from grudge.visualization import VtkVisualizer if write_output: vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order)) if rcon.is_head_rank: print("order %d" % order) print("#elements=", len(mesh.elements)) from grudge.mesh import BTAG_ALL, BTAG_NONE from grudge.models.em import TMMaxwellOperator from grudge.data import make_tdep_given, TimeIntervalGivenFunction op = TMMaxwellOperator(epsilon, mu, flux_type=1, current=TimeIntervalGivenFunction( make_tdep_given(CurrentSource()), off_time=final_time/10), absorb_tag=BTAG_ALL, pec_tag=BTAG_NONE) fields = op.assemble_eh(discr=discr) from grudge.timestep import LSRK4TimeStepper stepper = LSRK4TimeStepper() from time import time last_tstep = time() t = 0 # diagnostics setup --------------------------------------------------- from logpyle import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info if write_output: log_file_name = join(output_dir, "maxwell-%d.dat" % order) else: log_file_name = None logmgr = LogManager(log_file_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) from logpyle import IntervalTimer vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) from grudge.log import EMFieldGetter, add_em_quantities field_getter = EMFieldGetter(discr, op, lambda: fields) add_em_quantities(logmgr, op, field_getter) logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"]) # timestep loop ------------------------------------------------------- rhs = op.bind(discr) try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=final_time, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields)) for step, t, dt in step_it: if step % 10 == 0 and write_output: e, h = op.split_eh(fields) visf = vis.make_file(join(output_dir, "em-%d-%04d" % (order, step))) vis.add_data(visf, [ ("e", discr.convert_volume(e, "numpy")), ("h", discr.convert_volume(h, "numpy")), ], time=t, step=step ) visf.close() fields = stepper(fields, t, dt, rhs) assert discr.norm(fields) < 0.03 finally: if write_output: vis.close() logmgr.close() discr.close() if __name__ == "__main__": import cProfile as profile #profile.run("main()", "wave2d.prof") main() # entry points for py.test ---------------------------------------------------- from pytools.test import mark_test @mark_test.long def test_maxwell_2d(): main(write_output=False)