__copyright__ = "Copyright (C) 2008 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import division from __future__ import absolute_import import numpy import numpy.linalg as la from six.moves import range class UniformMachFlow: def __init__(self, mach=0.1, p=1, rho=1, reynolds=100, gamma=1.4, prandtl=0.72, char_length=1, spec_gas_const=287.1, angle_of_attack=None, direction=None, gaussian_pulse_at=None, pulse_magnitude=0.1): """ :param direction: is a vector indicating the direction of the flow. Only one of angle_of_attack and direction may be specified. Only the direction, not the magnitude, of direction is taken into account. :param angle_of_attack: if not None, specifies the angle of the flow along the Y axis, where the flow is directed along the X axis. """ if angle_of_attack is not None and direction is not None: raise ValueError("Only one of angle_of_attack and " "direction may be specified.") if angle_of_attack is None and direction is None: angle_of_attack = 0 if direction is not None: self.direction = direction/la.norm(direction) else: self.direction = None self.mach = mach self.p = p self.rho = rho self.gamma = gamma self.prandtl = prandtl self.reynolds = reynolds self.length = char_length self.spec_gas_const = spec_gas_const self.angle_of_attack = angle_of_attack self.gaussian_pulse_at = gaussian_pulse_at self.pulse_magnitude = pulse_magnitude self.c = (self.gamma * p / rho)**0.5 u = self.velocity = mach * self.c self.e = p / (self.gamma - 1) + rho / 2 * u**2 if numpy.isinf(self.reynolds): self.mu = 0 else: self.mu = u * self.length * rho / self.reynolds def direction_vector(self, dimensions): # this must be done here because dimensions is not known above if self.direction is None: assert self.angle_of_attack is not None direction = numpy.zeros(dimensions, dtype=numpy.float64) direction[0] = numpy.cos( self.angle_of_attack / 180. * numpy.pi) direction[1] = numpy.sin( self.angle_of_attack / 180. * numpy.pi) return direction else: return self.direction def __call__(self, t, x_vec): ones = numpy.ones_like(x_vec[0]) rho_field = ones*self.rho if self.gaussian_pulse_at is not None: rel_to_pulse = [x_vec[i] - self.gaussian_pulse_at[i] for i in range(len(x_vec))] rho_field += self.pulse_magnitude * self.rho * numpy.exp( - sum(rtp_i**2 for rtp_i in rel_to_pulse)/2) direction = self.direction_vector(x_vec.shape[0]) from grudge.tools import make_obj_array u_field = make_obj_array([ones*self.velocity*dir_i for dir_i in direction]) from grudge.tools import join_fields return join_fields(rho_field, self.e*ones, self.rho*u_field) def volume_interpolant(self, t, discr): return discr.convert_volume( self(t, discr.nodes.T), kind=discr.compute_kind, dtype=discr.default_scalar_type) def boundary_interpolant(self, t, discr, tag): return discr.convert_boundary( self(t, discr.get_boundary(tag).nodes.T), tag=tag, kind=discr.compute_kind, dtype=discr.default_scalar_type) class Vortex: def __init__(self): self.beta = 5 self.gamma = 1.4 self.center = numpy.array([5, 0]) self.velocity = numpy.array([1, 0]) self.mu = 0 self.prandtl = 0.72 self.spec_gas_const = 287.1 def __call__(self, t, x_vec): vortex_loc = self.center + t*self.velocity # coordinates relative to vortex center x_rel = x_vec[0] - vortex_loc[0] y_rel = x_vec[1] - vortex_loc[1] # Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159 # also JSH/TW Nodal DG Methods, p. 209 from math import pi r = numpy.sqrt(x_rel**2+y_rel**2) expterm = self.beta*numpy.exp(1-r**2) u = self.velocity[0] - expterm*y_rel/(2*pi) v = self.velocity[1] + expterm*x_rel/(2*pi) rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1)) p = rho**self.gamma e = p/(self.gamma-1) + rho/2*(u**2+v**2) from grudge.tools import join_fields return join_fields(rho, e, rho*u, rho*v) def volume_interpolant(self, t, discr): return discr.convert_volume( self(t, discr.nodes.T .astype(discr.default_scalar_type)), kind=discr.compute_kind) def boundary_interpolant(self, t, discr, tag): return discr.convert_boundary( self(t, discr.get_boundary(tag).nodes.T .astype(discr.default_scalar_type)), tag=tag, kind=discr.compute_kind) class Vortex: def __init__(self): self.beta = 5 self.gamma = 1.4 self.center = numpy.array([5, 0]) self.velocity = numpy.array([1, 0]) self.final_time = 0.5 self.mu = 0 self.prandtl = 0.72 self.spec_gas_const = 287.1 def __call__(self, t, x_vec): vortex_loc = self.center + t*self.velocity # coordinates relative to vortex center x_rel = x_vec[0] - vortex_loc[0] y_rel = x_vec[1] - vortex_loc[1] # Y.C. Zhou, G.W. Wei / Journal of Computational Physics 189 (2003) 159 # also JSH/TW Nodal DG Methods, p. 209 from math import pi r = numpy.sqrt(x_rel**2+y_rel**2) expterm = self.beta*numpy.exp(1-r**2) u = self.velocity[0] - expterm*y_rel/(2*pi) v = self.velocity[1] + expterm*x_rel/(2*pi) rho = (1-(self.gamma-1)/(16*self.gamma*pi**2)*expterm**2)**(1/(self.gamma-1)) p = rho**self.gamma e = p/(self.gamma-1) + rho/2*(u**2+v**2) from grudge.tools import join_fields return join_fields(rho, e, rho*u, rho*v) def volume_interpolant(self, t, discr): return discr.convert_volume( self(t, discr.nodes.T .astype(discr.default_scalar_type)), kind=discr.compute_kind) def boundary_interpolant(self, t, discr, tag): return discr.convert_boundary( self(t, discr.get_boundary(tag).nodes.T .astype(discr.default_scalar_type)), tag=tag, kind=discr.compute_kind)