__copyright__ = "Copyright (C) 2008 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import division from __future__ import absolute_import from __future__ import print_function import numpy def make_boxmesh(): from meshpy.tet import MeshInfo, build from meshpy.geometry import GeometryBuilder, Marker, make_box geob = GeometryBuilder() box_marker = Marker.FIRST_USER_MARKER extent_small = 0.1*numpy.ones(3, dtype=numpy.float64) geob.add_geometry(*make_box(-extent_small, extent_small)) # make small "separator box" for region attribute geob.add_geometry( *make_box( -extent_small*4, numpy.array([4, 0.4, 0.4], dtype=numpy.float64))) geob.add_geometry( *make_box( numpy.array([-1, -1, -1], dtype=numpy.float64), numpy.array([5, 1, 1], dtype=numpy.float64))) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info.set_holes([(0, 0, 0)]) # region attributes mesh_info.regions.resize(1) mesh_info.regions[0] = ( # point in region list(extent_small*2) + [ # region number 1, # max volume in region #0.0001 0.005 ]) mesh = build(mesh_info, max_volume=0.02, volume_constraints=True, attributes=True) print("%d elements" % len(mesh.elements)) #mesh.write_vtk("box-in-box.vtk") #print "done writing" fvi2fm = mesh.face_vertex_indices_to_face_marker face_marker_to_tag = { box_marker: "noslip", Marker.MINUS_X: "inflow", Marker.PLUS_X: "outflow", Marker.MINUS_Y: "inflow", Marker.PLUS_Y: "inflow", Marker.PLUS_Z: "inflow", Marker.MINUS_Z: "inflow" } def bdry_tagger(fvi, el, fn, all_v): face_marker = fvi2fm[fvi] return [face_marker_to_tag[face_marker]] from grudge.mesh import make_conformal_mesh return make_conformal_mesh( mesh.points, mesh.elements, bdry_tagger) def main(): from grudge.backends import guess_run_context rcon = guess_run_context(["cuda"]) if rcon.is_head_rank: mesh = make_boxmesh() #from grudge.mesh import make_rect_mesh #mesh = make_rect_mesh( # boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"]) mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() for order in [3]: from pytools import add_python_path_relative_to_script add_python_path_relative_to_script("..") from gas_dynamics_initials import UniformMachFlow box = UniformMachFlow(angle_of_attack=0) from grudge.models.gas_dynamics import GasDynamicsOperator op = GasDynamicsOperator(dimensions=3, gamma=box.gamma, mu=box.mu, prandtl=box.prandtl, spec_gas_const=box.spec_gas_const, bc_inflow=box, bc_outflow=box, bc_noslip=box, inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip") discr = rcon.make_discretization(mesh_data, order=order, debug=[ #"cuda_no_plan", #"cuda_dump_kernels", #"dump_dataflow_graph", #"dump_optemplate_stages", #"dump_dataflow_graph", #"print_op_code", "cuda_no_plan_el_local", ], default_scalar_type=numpy.float32, tune_for=op.sym_operator()) from grudge.visualization import SiloVisualizer, VtkVisualizer # noqa #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order) vis = SiloVisualizer(discr, rcon) fields = box.volume_interpolant(0, discr) navierstokes_ex = op.bind(discr) max_eigval = [0] def rhs(t, q): ode_rhs, speed = navierstokes_ex(t, q) max_eigval[0] = speed return ode_rhs rhs(0, fields) if rcon.is_head_rank: print("---------------------------------------------") print("order %d" % order) print("---------------------------------------------") print("#elements=", len(mesh.elements)) from grudge.timestep import RK4TimeStepper stepper = RK4TimeStepper() # diagnostics setup --------------------------------------------------- from logpyle import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"]) from logpyle import LogQuantity class ChangeSinceLastStep(LogQuantity): """Records the change of a variable between a time step and the previous one""" def __init__(self, name="change"): LogQuantity.__init__(self, name, "1", "Change since last time step") self.old_fields = 0 def __call__(self): result = discr.norm(fields - self.old_fields) self.old_fields = fields return result logmgr.add_quantity(ChangeSinceLastStep()) # timestep loop ------------------------------------------------------- try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=200, #max_steps=500, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0])) for step, t, dt in step_it: if step % 200 == 0: #if False: visf = vis.make_file("box-%d-%06d" % (order, step)) #rhs_fields = rhs(t, fields) vis.add_data(visf, [ ("rho", discr.convert_volume( op.rho(fields), kind="numpy")), ("e", discr.convert_volume( op.e(fields), kind="numpy")), ("rho_u", discr.convert_volume( op.rho_u(fields), kind="numpy")), ("u", discr.convert_volume( op.u(fields), kind="numpy")), # ("rhs_rho", discr.convert_volume( # op.rho(rhs_fields), kind="numpy")), # ("rhs_e", discr.convert_volume( # op.e(rhs_fields), kind="numpy")), # ("rhs_rho_u", discr.convert_volume( # op.rho_u(rhs_fields), kind="numpy")), ], expressions=[ ("p", "(0.4)*(e- 0.5*(rho_u*u))"), ], time=t, step=step ) visf.close() fields = stepper(fields, t, dt, rhs) finally: vis.close() logmgr.save() discr.close() if __name__ == "__main__": main()