# grudge - the Hybrid'n'Easy DG Environment # Copyright (C) 2008 Andreas Kloeckner # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import division from __future__ import absolute_import from __future__ import print_function import numpy import numpy.linalg as la class SineWave: def __init__(self): self.gamma = 1.4 self.mu = 0 self.prandtl = 0.72 self.spec_gas_const = 287.1 def __call__(self, t, x_vec): rho = 2 + numpy.sin(x_vec[0] + x_vec[1] + x_vec[2] - 2 * t) velocity = numpy.array([1, 1, 0]) p = 1 e = p/(self.gamma-1) + rho/2 * numpy.dot(velocity, velocity) rho_u = rho * velocity[0] rho_v = rho * velocity[1] rho_w = rho * velocity[2] from grudge.tools import join_fields return join_fields(rho, e, rho_u, rho_v, rho_w) def properties(self): return(self.gamma, self.mu, self.prandtl, self.spec_gas_const) def volume_interpolant(self, t, discr): return discr.convert_volume( self(t, discr.nodes.T), kind=discr.compute_kind) def boundary_interpolant(self, t, discr, tag): return discr.convert_boundary( self(t, discr.get_boundary(tag).nodes.T), tag=tag, kind=discr.compute_kind) def main(final_time=1, write_output=False): from grudge.backends import guess_run_context rcon = guess_run_context() from grudge.tools import EOCRecorder, to_obj_array eoc_rec = EOCRecorder() if rcon.is_head_rank: from grudge.mesh import make_box_mesh mesh = make_box_mesh((0,0,0), (10,10,10), max_volume=0.5) mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() for order in [3, 4, 5]: discr = rcon.make_discretization(mesh_data, order=order, default_scalar_type=numpy.float64) from grudge.visualization import SiloVisualizer, VtkVisualizer vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order) #vis = SiloVisualizer(discr, rcon) sinewave = SineWave() fields = sinewave.volume_interpolant(0, discr) gamma, mu, prandtl, spec_gas_const = sinewave.properties() from grudge.mesh import BTAG_ALL from grudge.models.gas_dynamics import GasDynamicsOperator op = GasDynamicsOperator(dimensions=mesh.dimensions, gamma=gamma, mu=mu, prandtl=prandtl, spec_gas_const=spec_gas_const, bc_inflow=sinewave, bc_outflow=sinewave, bc_noslip=sinewave, inflow_tag=BTAG_ALL, source=None) euler_ex = op.bind(discr) max_eigval = [0] def rhs(t, q): ode_rhs, speed = euler_ex(t, q) max_eigval[0] = speed return ode_rhs rhs(0, fields) if rcon.is_head_rank: print("---------------------------------------------") print("order %d" % order) print("---------------------------------------------") print("#elements=", len(mesh.elements)) from grudge.timestep import RK4TimeStepper stepper = RK4TimeStepper() # diagnostics setup --------------------------------------------------- from pytools.log import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info if write_output: log_name = ("euler-sinewave-%(order)d-%(els)d.dat" % {"order":order, "els":len(mesh.elements)}) else: log_name = False logmgr = LogManager(log_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"]) # timestep loop ------------------------------------------------------- try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=final_time, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0])) for step, t, dt in step_it: #if step % 10 == 0: if write_output: visf = vis.make_file("sinewave-%d-%04d" % (order, step)) #from pyvisfile.silo import DB_VARTYPE_VECTOR vis.add_data(visf, [ ("rho", discr.convert_volume(op.rho(fields), kind="numpy")), ("e", discr.convert_volume(op.e(fields), kind="numpy")), ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")), ("u", discr.convert_volume(op.u(fields), kind="numpy")), #("true_rho", op.rho(true_fields)), #("true_e", op.e(true_fields)), #("true_rho_u", op.rho_u(true_fields)), #("true_u", op.u(true_fields)), #("rhs_rho", op.rho(rhs_fields)), #("rhs_e", op.e(rhs_fields)), #("rhs_rho_u", op.rho_u(rhs_fields)), ], #expressions=[ #("diff_rho", "rho-true_rho"), #("diff_e", "e-true_e"), #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR), #("p", "0.4*(e- 0.5*(rho_u*u))"), #], time=t, step=step ) visf.close() fields = stepper(fields, t, dt, rhs) finally: vis.close() logmgr.close() discr.close() true_fields = sinewave.volume_interpolant(t, discr) eoc_rec.add_data_point(order, discr.norm(fields-true_fields)) print() print(eoc_rec.pretty_print("P.Deg.", "L2 Error")) if __name__ == "__main__": main() # entry points for py.test ---------------------------------------------------- from pytools.test import mark_test @mark_test.long def test_euler_sine_wave(): main(final_time=0.1, write_output=False)