__copyright__ = "Copyright (C) 2020 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la # noqa import pyopencl as cl from pytools.obj_array import flat_obj_array from meshmode.array_context import PyOpenCLArrayContext from meshmode.dof_array import thaw from meshmode.mesh import BTAG_ALL, BTAG_NONE # noqa from grudge.discretization import DGDiscretizationWithBoundaries import grudge.op as op from grudge.shortcuts import make_visualizer from grudge.symbolic.primitives import TracePair, QTAG_NONE, DOFDesc # {{{ wave equation bits def wave_flux(discr, c, w_tpair): dd = w_tpair.dd dd_quad = dd.with_qtag("vel_prod") u = w_tpair[0] v = w_tpair[1:] normal = thaw(u.int.array_context, op.normal(discr, dd)) flux_weak = flat_obj_array( np.dot(v.avg, normal), normal*u.avg, ) # upwind flux_weak += flat_obj_array( 0.5*(u.ext-u.int), 0.5*normal*np.dot(normal, v.ext-v.int), ) # FIXME this flux is only correct for continuous c dd_allfaces_quad = dd_quad.with_dtag("all_faces") c_quad = op.project(discr, "vol", dd_quad, c) flux_quad = op.project(discr, dd, dd_quad, flux_weak) return op.project(discr, dd_quad, dd_allfaces_quad, c_quad*flux_quad) def wave_operator(discr, c, w): u = w[0] v = w[1:] dir_u = op.project(discr, "vol", BTAG_ALL, u) dir_v = op.project(discr, "vol", BTAG_ALL, v) dir_bval = flat_obj_array(dir_u, dir_v) dir_bc = flat_obj_array(-dir_u, dir_v) dd_quad = DOFDesc("vol", "vel_prod") c_quad = op.project(discr, "vol", dd_quad, c) w_quad = op.project(discr, "vol", dd_quad, w) u_quad = w_quad[0] v_quad = w_quad[1:] dd_allfaces_quad = DOFDesc("all_faces", "vel_prod") return ( op.inverse_mass(discr, flat_obj_array( -op.weak_div(discr, dd_quad, c_quad*v_quad), -op.weak_grad(discr, dd_quad, c_quad*u_quad) ) + # noqa: W504 op.face_mass(discr, dd_allfaces_quad, wave_flux(discr, c=c, w_tpair=op.interior_trace_pair(discr, w)) + wave_flux(discr, c=c, w_tpair=TracePair( BTAG_ALL, interior=dir_bval, exterior=dir_bc)) )) ) # }}} def rk4_step(y, t, h, f): k1 = f(t, y) k2 = f(t+h/2, y + h/2*k1) k3 = f(t+h/2, y + h/2*k2) k4 = f(t+h, y + h*k3) return y + h/6*(k1 + 2*k2 + 2*k3 + k4) def bump(actx, discr, t=0, width=0.05, center=None): if center is None: center = np.array([0.2, 0.35, 0.1]) center = center[:discr.dim] source_omega = 3 nodes = thaw(actx, op.nodes(discr)) center_dist = flat_obj_array([ nodes[i] - center[i] for i in range(discr.dim) ]) return ( np.cos(source_omega*t) * actx.np.exp( -np.dot(center_dist, center_dist) / width**2)) def main(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) dim = 2 nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, n=(nel_1d,)*dim) order = 3 if dim == 2: # no deep meaning here, just a fudge factor dt = 0.75/(nel_1d*order**2) elif dim == 3: # no deep meaning here, just a fudge factor dt = 0.45/(nel_1d*order**2) else: raise ValueError("don't have a stable time step guesstimate") print("%d elements" % mesh.nelements) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory, \ PolynomialWarpAndBlendGroupFactory discr = DGDiscretizationWithBoundaries(actx, mesh, quad_tag_to_group_factory={ QTAG_NONE: PolynomialWarpAndBlendGroupFactory(order), "vel_prod": QuadratureSimplexGroupFactory(3*order), }) # bounded above by 1 c = 0.2 + 0.8*bump(actx, discr, center=np.zeros(3), width=0.5) fields = flat_obj_array( bump(actx, discr, ), [discr.zeros(actx) for i in range(discr.dim)] ) vis = make_visualizer(discr, order+3 if dim == 2 else order) def rhs(t, w): return wave_operator(discr, c=c, w=w) t = 0 t_final = 3 istep = 0 while t < t_final: fields = rk4_step(fields, t, dt, rhs) if istep % 10 == 0: print(istep, t, op.norm(discr, fields[0], p=2)) vis.write_vtk_file("fld-wave-eager-var-velocity-%04d.vtu" % istep, [ ("c", c), ("u", fields[0]), ("v", fields[1:]), ]) t += dt istep += 1 if __name__ == "__main__": main() # vim: foldmethod=marker