from __future__ import division, absolute_import, print_function __copyright__ = "Copyright (C) 2015 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la import pyopencl as cl import pyopencl.array import pyopencl.clmath from pytools.obj_array import join_fields, make_obj_array from grudge import sym, bind, DGDiscretizationWithBoundaries import pytest from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) @pytest.mark.parametrize("dim", [2, 3]) def test_inverse_metric(ctx_factory, dim): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, n=(6,)*dim, order=4) def m(x): result = np.empty_like(x) result[0] = ( 1.5*x[0] + np.cos(x[0]) + 0.1*np.sin(10*x[1])) result[1] = ( 0.05*np.cos(10*x[0]) + 1.3*x[1] + np.sin(x[1])) if len(x) == 3: result[2] = x[2] return result from meshmode.mesh.processing import map_mesh mesh = map_mesh(mesh, m) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4) sym_op = ( sym.forward_metric_derivative_mat(mesh.dim) .dot( sym.inverse_metric_derivative_mat(mesh.dim) ) .reshape(-1)) op = bind(discr, sym_op) mat = op(queue).reshape(mesh.dim, mesh.dim) for i in range(mesh.dim): for j in range(mesh.dim): tgt = 1 if i == j else 0 err = np.max(np.abs((mat[i, j] - tgt).get(queue=queue))) logger.info("error[%d, %d]: %.5e", i, j, err) assert err < 1.0e-12, (i, j, err) @pytest.mark.parametrize("ambient_dim", [1, 2, 3]) @pytest.mark.parametrize("quad_tag", [sym.QTAG_NONE, "OVSMP"]) def test_mass_mat_trig(ctx_factory, ambient_dim, quad_tag): """Check the integral of some trig functions on an interval using the mass matrix. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) nelements = 17 order = 4 a = -4.0 * np.pi b = +9.0 * np.pi true_integral = 13*np.pi/2 * (b - a)**(ambient_dim - 1) from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory dd_quad = sym.DOFDesc(sym.DTAG_VOLUME_ALL, quad_tag) if quad_tag is sym.QTAG_NONE: quad_tag_to_group_factory = {} else: quad_tag_to_group_factory = { quad_tag: QuadratureSimplexGroupFactory(order=2*order) } from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(a,)*ambient_dim, b=(b,)*ambient_dim, n=(nelements,)*ambient_dim, order=1) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order, quad_tag_to_group_factory=quad_tag_to_group_factory) def _get_variables_on(dd): sym_f = sym.var("f", dd=dd) sym_x = sym.nodes(ambient_dim, dd=dd) sym_ones = sym.Ones(dd) return sym_f, sym_x, sym_ones sym_f, sym_x, sym_ones = _get_variables_on(sym.DD_VOLUME) f_volm = bind(discr, sym.cos(sym_x[0])**2)(queue).get() ones_volm = bind(discr, sym_ones)(queue).get() sym_f, sym_x, sym_ones = _get_variables_on(dd_quad) f_quad = bind(discr, sym.cos(sym_x[0])**2)(queue) ones_quad = bind(discr, sym_ones)(queue) mass_op = bind(discr, sym.MassOperator(dd_quad, sym.DD_VOLUME)(sym_f)) num_integral_1 = np.dot(ones_volm, mass_op(queue, f=f_quad).get()) err_1 = abs(num_integral_1 - true_integral) assert err_1 < 5.0e-10, err_1 num_integral_2 = np.dot(f_volm, mass_op(queue, f=ones_quad).get()) err_2 = abs(num_integral_2 - true_integral) assert err_2 < 5.0e-10, err_2 if quad_tag is sym.QTAG_NONE: # NOTE: `integral` always makes a square mass matrix and # `QuadratureSimplexGroupFactory` does not have a `mass_matrix` method. num_integral_3 = bind(discr, sym.integral(sym_f, dd=dd_quad))(queue, f=f_quad) err_3 = abs(num_integral_3 - true_integral) assert err_3 < 5.0e-10, err_3 def _ellipse_surface_area(radius, aspect_ratio): # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html eccentricity = 1.0 - (1/aspect_ratio)**2 if abs(aspect_ratio - 2.0) < 1.0e-14: # NOTE: hardcoded value so we don't need scipy for the test ellip_e = 1.2110560275684594 else: from scipy.special import ellipe ellip_e = ellipe(eccentricity) return 4.0 * radius * ellip_e def _spheroid_surface_area(radius, aspect_ratio): # https://en.wikipedia.org/wiki/Ellipsoid#Surface_area a = 1.0 c = aspect_ratio if a < c: e = np.sqrt(1.0 - (a/c)**2) return 2.0 * np.pi * radius**2 * (1.0 + (c/a) / e * np.arcsin(e)) else: e = np.sqrt(1.0 - (c/a)**2) return 2.0 * np.pi * radius**2 * (1 + (c/a)**2 / e * np.arctanh(e)) @pytest.mark.parametrize("name", [ "2-1-ellipse", "spheroid", "box2d", "box3d" ]) def test_mass_surface_area(ctx_factory, name): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) # {{{ cases if name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio) elif name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio) elif name == "box2d": from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=2) surface_area = 1.0 elif name == "box3d": from mesh_data import BoxMeshBuilder builder = BoxMeshBuilder(ambient_dim=3) surface_area = 1.0 else: raise ValueError("unknown geometry name: %s" % name) # }}} # {{{ convergence from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, builder.mesh_order) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order) volume_discr = discr.discr_from_dd(sym.DD_VOLUME) x = discr.discr_from_dd("vol").nodes().get(queue) logger.info("nnodes: %d", volume_discr.nnodes) logger.info("nelements: %d", volume_discr.mesh.nelements) logger.info("bbox: %s", [(np.min(x[n]), np.max(x[n])) for n in range(x.shape[0])]) # {{{ compute surface area dd = sym.DD_VOLUME sym_op = sym.NodalSum(dd)(sym.MassOperator(dd, dd)(sym.Ones(dd))) approx_surface_area = bind(discr, sym_op)(queue) logger.info("surface: got {:.5e} / expected {:.5e}".format( approx_surface_area, surface_area)) area_error = abs(approx_surface_area - surface_area) / abs(surface_area) # }}} h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim, dd=dd))(queue) eoc.add_data_point(h_max, area_error) # }}} logger.info("surface area error\n%s", str(eoc)) assert eoc.max_error() < 1.0e-14 \ or eoc.order_estimate() >= (builder.order - 1.0) @pytest.mark.parametrize("name", ["2-1-ellipse", "spheroid"]) def test_surface_mass_operator_inverse(ctx_factory, name): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) # {{{ cases if name == "2-1-ellipse": from mesh_data import EllipseMeshBuilder builder = EllipseMeshBuilder(radius=3.1, aspect_ratio=2.0) surface_area = _ellipse_surface_area(builder.radius, builder.aspect_ratio) elif name == "spheroid": from mesh_data import SpheroidMeshBuilder builder = SpheroidMeshBuilder() surface_area = _spheroid_surface_area(builder.radius, builder.aspect_ratio) else: raise ValueError("unknown geometry name: %s" % name) # }}} # {{{ convergence from pytools.convergence import EOCRecorder eoc = EOCRecorder() for resolution in builder.resolutions: mesh = builder.get_mesh(resolution, builder.mesh_order) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=builder.order) volume_discr = discr.discr_from_dd(sym.DD_VOLUME) x = discr.discr_from_dd("vol").nodes().get(queue) logger.info("nnodes: %d", volume_discr.nnodes) logger.info("nelements: %d", volume_discr.mesh.nelements) logger.info("bbox: %s", [(np.min(x[n]), np.max(x[n])) for n in range(x.shape[0])]) # {{{ compute inverse mass dd = sym.DD_VOLUME sym_f = sym.cos(4.0 * sym.nodes(mesh.ambient_dim, dd)[0]) sym_op = sym.InverseMassOperator(dd, dd)( sym.MassOperator(dd, dd)(sym.var("f"))) f = bind(discr, sym_f)(queue) f_inv = bind(discr, sym_op)(queue, f=f) logger.info("inverse: got {:.5e} / expected {:.5e}".format( cl.array.max(f - f_inv).get(queue), 1.0)) inv_error = la.norm(f.get(queue) - f_inv.get(queue)) \ / la.norm(f.get(queue)) # }}} h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim, dd=dd))(queue) eoc.add_data_point(h_max, inv_error) # }}} logger.info("inverse mass error\n%s", str(eoc)) assert eoc.max_error() < 5.0e-09 \ or eoc.order_estimate() >= (builder.order - 1.0) @pytest.mark.parametrize("dim", [1, 2, 3]) def test_tri_diff_mat(ctx_factory, dim, order=4): """Check differentiation matrix along the coordinate axes on a disk Uses sines as the function to differentiate. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) from meshmode.mesh.generation import generate_regular_rect_mesh from pytools.convergence import EOCRecorder axis_eoc_recs = [EOCRecorder() for axis in range(dim)] for n in [10, 20]: mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, n=(n,)*dim, order=4) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=4) nabla = sym.nabla(dim) for axis in range(dim): x = sym.nodes(dim) f = bind(discr, sym.sin(3*x[axis]))(queue) df = bind(discr, 3*sym.cos(3*x[axis]))(queue) sym_op = nabla[axis](sym.var("f")) bound_op = bind(discr, sym_op) df_num = bound_op(queue, f=f) linf_error = la.norm((df_num-df).get(), np.Inf) axis_eoc_recs[axis].add_data_point(1/n, linf_error) for axis, eoc_rec in enumerate(axis_eoc_recs): logger.info("axis %d\n%s", axis, eoc_rec) assert eoc_rec.order_estimate() >= order def test_2d_gauss_theorem(ctx_factory): """Verify Gauss's theorem explicitly on a mesh""" pytest.importorskip("meshpy") from meshpy.geometry import make_circle, GeometryBuilder from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=2) def f(x): return join_fields( sym.sin(3*x[0])+sym.cos(3*x[1]), sym.sin(2*x[0])+sym.cos(x[1])) gauss_err = bind(discr, sym.integral(( sym.nabla(2) * f(sym.nodes(2)) ).sum()) - # noqa: W504 sym.integral( sym.interp("vol", sym.BTAG_ALL)(f(sym.nodes(2))) .dot(sym.normal(sym.BTAG_ALL, 2)), dd=sym.BTAG_ALL) )(queue) assert abs(gauss_err) < 1e-13 @pytest.mark.parametrize(("mesh_name", "mesh_pars"), [ ("segment", [8, 16, 32]), ("disk", [0.1, 0.05]), ("rect2", [4, 8]), ("rect3", [4, 6]), ]) @pytest.mark.parametrize("op_type", ["strong", "weak"]) @pytest.mark.parametrize("flux_type", ["central"]) @pytest.mark.parametrize("order", [3, 4, 5]) # test: 'test_convergence_advec(cl._csc, "disk", [0.1, 0.05], "strong", "upwind", 3)' def test_convergence_advec(ctx_factory, mesh_name, mesh_pars, op_type, flux_type, order, visualize=False): """Test whether 2D advection actually converges""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for mesh_par in mesh_pars: if mesh_name == "segment": from meshmode.mesh.generation import generate_box_mesh mesh = generate_box_mesh( [np.linspace(-1.0, 1.0, mesh_par)], order=order) dim = 1 dt_factor = 1.0 elif mesh_name == "disk": pytest.importorskip("meshpy") from meshpy.geometry import make_circle, GeometryBuilder from meshpy.triangle import MeshInfo, build geob = GeometryBuilder() geob.add_geometry(*make_circle(1)) mesh_info = MeshInfo() geob.set(mesh_info) mesh_info = build(mesh_info, max_volume=mesh_par) from meshmode.mesh.io import from_meshpy mesh = from_meshpy(mesh_info, order=1) dim = 2 dt_factor = 4 elif mesh_name.startswith("rect"): dim = int(mesh_name[4:]) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, n=(mesh_par,)*dim, order=4) if dim == 2: dt_factor = 4 elif dim == 3: dt_factor = 2 else: raise ValueError("dt_factor not known for %dd" % dim) else: raise ValueError("invalid mesh name: " + mesh_name) v = np.array([0.27, 0.31, 0.1])[:dim] norm_v = la.norm(v) def f(x): return sym.sin(10*x) def u_analytic(x): return f( -v.dot(x)/norm_v + sym.var("t", sym.DD_SCALAR)*norm_v) from grudge.models.advection import ( StrongAdvectionOperator, WeakAdvectionOperator) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) op_class = { "strong": StrongAdvectionOperator, "weak": WeakAdvectionOperator, }[op_type] op = op_class(v, inflow_u=u_analytic(sym.nodes(dim, sym.BTAG_ALL)), flux_type=flux_type) bound_op = bind(discr, op.sym_operator()) u = bind(discr, u_analytic(sym.nodes(dim)))(queue, t=0) def rhs(t, u): return bound_op(queue, t=t, u=u) if dim == 3: final_time = 0.1 else: final_time = 0.2 h_max = bind(discr, sym.h_max_from_volume(discr.ambient_dim))(queue) dt = dt_factor * h_max/order**2 nsteps = (final_time // dt) + 1 dt = final_time/nsteps + 1e-15 from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) last_u = None from grudge.shortcuts import make_visualizer vis = make_visualizer(discr, vis_order=order) step = 0 for event in dt_stepper.run(t_end=final_time): if isinstance(event, dt_stepper.StateComputed): step += 1 logger.debug("[%04d] t = %.5f", step, event.t) last_t = event.t last_u = event.state_component if visualize: vis.write_vtk_file("fld-%s-%04d.vtu" % (mesh_par, step), [("u", event.state_component)]) error_l2 = bind(discr, sym.norm(2, sym.var("u")-u_analytic(sym.nodes(dim))))( queue, t=last_t, u=last_u) logger.info("h_max %.5e error %.5e", h_max, error_l2) eoc_rec.add_data_point(h_max, error_l2) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order @pytest.mark.parametrize("order", [3, 4, 5]) def test_convergence_maxwell(ctx_factory, order): """Test whether 3D Maxwell's actually converges""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() dims = 3 ns = [4, 6, 8] for n in ns: from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(0.0,)*dims, b=(1.0,)*dims, n=(n,)*dims) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order) epsilon = 1 mu = 1 from grudge.models.em import get_rectangular_cavity_mode sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2)) analytic_sol = bind(discr, sym_mode) fields = analytic_sol(queue, t=0, epsilon=epsilon, mu=mu) from grudge.models.em import MaxwellOperator op = MaxwellOperator(epsilon, mu, flux_type=0.5, dimensions=dims) op.check_bc_coverage(mesh) bound_op = bind(discr, op.sym_operator()) def rhs(t, w): return bound_op(queue, t=t, w=w) dt = 0.002 final_t = dt * 5 nsteps = int(final_t/dt) from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("w", dt, fields, rhs) logger.info("dt %.5e nsteps %5d", dt, nsteps) norm = bind(discr, sym.norm(2, sym.var("u"))) step = 0 for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" esc = event.state_component step += 1 logger.debug("[%04d] t = %.5e", step, event.t) sol = analytic_sol(queue, mu=mu, epsilon=epsilon, t=step * dt) vals = [norm(queue, u=(esc[i] - sol[i])) / norm(queue, u=sol[i]) for i in range(5)] # noqa E501 total_error = sum(vals) eoc_rec.add_data_point(1.0/n, total_error) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) assert eoc_rec.order_estimate() > order @pytest.mark.parametrize("order", [2, 3, 4]) def test_improvement_quadrature(ctx_factory, order): """Test whether quadrature improves things and converges""" from meshmode.mesh.generation import generate_regular_rect_mesh from grudge.models.advection import VariableCoefficientAdvectionOperator from pytools.convergence import EOCRecorder from meshmode.discretization.poly_element import QuadratureSimplexGroupFactory cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) dims = 2 sym_nds = sym.nodes(dims) advec_v = join_fields(-1*sym_nds[1], sym_nds[0]) flux = "upwind" op = VariableCoefficientAdvectionOperator(advec_v, 0, flux_type=flux) def gaussian_mode(): source_width = 0.1 sym_x = sym.nodes(2) return sym.exp(-np.dot(sym_x, sym_x) / source_width**2) def conv_test(descr, use_quad): logger.info("-" * 75) logger.info(descr) logger.info("-" * 75) eoc_rec = EOCRecorder() ns = [20, 25] for n in ns: mesh = generate_regular_rect_mesh( a=(-0.5,)*dims, b=(0.5,)*dims, n=(n,)*dims, order=order) if use_quad: quad_tag_to_group_factory = { "product": QuadratureSimplexGroupFactory(order=4*order) } else: quad_tag_to_group_factory = {"product": None} discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order, quad_tag_to_group_factory=quad_tag_to_group_factory) bound_op = bind(discr, op.sym_operator()) fields = bind(discr, gaussian_mode())(queue, t=0) norm = bind(discr, sym.norm(2, sym.var("u"))) esc = bound_op(queue, u=fields) total_error = norm(queue, u=esc) eoc_rec.add_data_point(1.0/n, total_error) logger.info("\n%s", eoc_rec.pretty_print( abscissa_label="h", error_label="L2 Error")) return eoc_rec.order_estimate(), np.array([x[1] for x in eoc_rec.history]) eoc, errs = conv_test("no quadrature", False) q_eoc, q_errs = conv_test("with quadrature", True) assert q_eoc > eoc assert (q_errs < errs).all() assert q_eoc > order def test_foreign_points(ctx_factory): pytest.importorskip("sumpy") import sumpy.point_calculus as pc cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) dim = 2 cp = pc.CalculusPatch(np.zeros(dim)) from grudge.discretization import PointsDiscretization pdiscr = PointsDiscretization(cl.array.to_device(queue, cp.points)) bind(pdiscr, sym.nodes(dim)**2)(queue) def test_op_collector_order_determinism(): class TestOperator(sym.Operator): def __init__(self): sym.Operator.__init__(self, sym.DD_VOLUME, sym.DD_VOLUME) mapper_method = "map_test_operator" from grudge.symbolic.mappers import BoundOperatorCollector class TestBoundOperatorCollector(BoundOperatorCollector): def map_test_operator(self, expr): return self.map_operator(expr) v0 = sym.var("v0") ob0 = sym.OperatorBinding(TestOperator(), v0) v1 = sym.var("v1") ob1 = sym.OperatorBinding(TestOperator(), v1) # The output order isn't significant, but it should always be the same. assert list(TestBoundOperatorCollector(TestOperator)(ob0 + ob1)) == [ob0, ob1] def test_bessel(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) dims = 2 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(0.1,)*dims, b=(1.0,)*dims, n=(8,)*dims) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=3) nodes = sym.nodes(dims) r = sym.cse(sym.sqrt(nodes[0]**2 + nodes[1]**2)) # https://dlmf.nist.gov/10.6.1 n = 3 bessel_zero = ( sym.bessel_j(n+1, r) + sym.bessel_j(n-1, r) - 2*n/r * sym.bessel_j(n, r)) z = bind(discr, sym.norm(2, bessel_zero))(queue) assert z < 1e-15 def test_external_call(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) def double(queue, x): return 2 * x from meshmode.mesh.generation import generate_regular_rect_mesh dims = 2 mesh = generate_regular_rect_mesh(a=(0,) * dims, b=(1,) * dims, n=(4,) * dims) discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=1) ones = sym.Ones(sym.DD_VOLUME) op = ( ones * 3 + sym.FunctionSymbol("double")(ones)) from grudge.function_registry import ( base_function_registry, register_external_function) freg = register_external_function( base_function_registry, "double", implementation=double, dd=sym.DD_VOLUME) bound_op = bind(discr, op, function_registry=freg) result = bound_op(queue, double=double) assert (result == 5).get().all() @pytest.mark.parametrize("array_type", ["scalar", "vector"]) def test_function_symbol_array(ctx_factory, array_type): ctx = ctx_factory() queue = cl.CommandQueue(ctx) from meshmode.mesh.generation import generate_regular_rect_mesh dim = 2 mesh = generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, n=(8,)*dim, order=4) discr = DGDiscretizationWithBoundaries(ctx, mesh, order=4) nnodes = discr.discr_from_dd(sym.DD_VOLUME).nnodes import pyopencl.clrandom # noqa: F401 if array_type == "scalar": sym_x = sym.var("x") x = cl.clrandom.rand(queue, nnodes, dtype=np.float) elif array_type == "vector": sym_x = sym.make_sym_array("x", dim) x = make_obj_array([ cl.clrandom.rand(queue, nnodes, dtype=np.float) for _ in range(dim) ]) else: raise ValueError("unknown array type") norm = bind(discr, sym.norm(2, sym_x))(queue, x=x) assert isinstance(norm, float) # You can test individual routines by typing # $ python test_grudge.py 'test_routine()' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: pytest.main([__file__]) # vim: fdm=marker