__copyright__ = "Copyright (C) 2021 University of Illinois Board of Trustees" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import meshmode.mesh.generation as mgen from pytools.obj_array import make_obj_array from grudge import op, DiscretizationCollection from grudge.dof_desc import DOFDesc import pytest from grudge.array_context import PytestPyOpenCLArrayContextFactory from arraycontext import pytest_generate_tests_for_array_contexts pytest_generate_tests = pytest_generate_tests_for_array_contexts( [PytestPyOpenCLArrayContextFactory]) from arraycontext.container.traversal import thaw import logging logger = logging.getLogger(__name__) # {{{ gradient @pytest.mark.parametrize("form", ["strong", "weak"]) @pytest.mark.parametrize("dim", [1, 2, 3]) @pytest.mark.parametrize("order", [2, 3]) @pytest.mark.parametrize(("vectorize", "nested"), [ (False, False), (True, False), (True, True) ]) def test_gradient(actx_factory, form, dim, order, vectorize, nested, visualize=False): actx = actx_factory() from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for n in [4, 6, 8]: mesh = mgen.generate_regular_rect_mesh( a=(-1,)*dim, b=(1,)*dim, nelements_per_axis=(n,)*dim) dcoll = DiscretizationCollection(actx, mesh, order=order) def f(x): result = dcoll.zeros(actx) + 1 for i in range(dim-1): result = result * actx.np.sin(np.pi*x[i]) result = result * actx.np.cos(np.pi/2*x[dim-1]) return result def grad_f(x): result = make_obj_array([dcoll.zeros(actx) + 1 for _ in range(dim)]) for i in range(dim-1): for j in range(i): result[i] = result[i] * actx.np.sin(np.pi*x[j]) result[i] = result[i] * np.pi*actx.np.cos(np.pi*x[i]) for j in range(i+1, dim-1): result[i] = result[i] * actx.np.sin(np.pi*x[j]) result[i] = result[i] * actx.np.cos(np.pi/2*x[dim-1]) for j in range(dim-1): result[dim-1] = result[dim-1] * actx.np.sin(np.pi*x[j]) result[dim-1] = result[dim-1] * (-np.pi/2*actx.np.sin(np.pi/2*x[dim-1])) return result x = thaw(dcoll.nodes(), actx) if vectorize: u = make_obj_array([(i+1)*f(x) for i in range(dim)]) else: u = f(x) def get_flux(u_tpair): dd = u_tpair.dd dd_allfaces = dd.with_dtag("all_faces") normal = thaw(dcoll.normal(dd), actx) u_avg = u_tpair.avg if vectorize: if nested: flux = make_obj_array([u_avg_i * normal for u_avg_i in u_avg]) else: flux = np.outer(u_avg, normal) else: flux = u_avg * normal return op.project(dcoll, dd, dd_allfaces, flux) dd_allfaces = DOFDesc("all_faces") if form == "strong": grad_u = ( op.local_grad(dcoll, u, nested=nested) # No flux terms because u doesn't have inter-el jumps ) elif form == "weak": grad_u = op.inverse_mass(dcoll, -op.weak_local_grad(dcoll, u, nested=nested) # pylint: disable=E1130 + # noqa: W504 op.face_mass(dcoll, dd_allfaces, # Note: no boundary flux terms here because u_ext == u_int == 0 sum(get_flux(utpair) for utpair in op.interior_trace_pairs(dcoll, u)) ) ) else: raise ValueError("Invalid form argument.") if vectorize: expected_grad_u = make_obj_array( [(i+1)*grad_f(x) for i in range(dim)]) if not nested: expected_grad_u = np.stack(expected_grad_u, axis=0) else: expected_grad_u = grad_f(x) if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll, vis_order=order if dim == 3 else dim+3) filename = (f"test_gradient_{form}_{dim}_{order}" f"{'_vec' if vectorize else ''}{'_nested' if nested else ''}.vtu") vis.write_vtk_file(filename, [ ("u", u), ("grad_u", grad_u), ("expected_grad_u", expected_grad_u), ], overwrite=True) rel_linf_err = actx.to_numpy( op.norm(dcoll, grad_u - expected_grad_u, np.inf) / op.norm(dcoll, expected_grad_u, np.inf)) eoc_rec.add_data_point(1./n, rel_linf_err) print("L^inf error:") print(eoc_rec) assert(eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11) # }}} # {{{ divergence @pytest.mark.parametrize("form", ["strong", "weak"]) @pytest.mark.parametrize("dim", [1, 2, 3]) @pytest.mark.parametrize("order", [2, 3]) @pytest.mark.parametrize(("vectorize", "nested"), [ (False, False), (True, False), (True, True) ]) def test_divergence(actx_factory, form, dim, order, vectorize, nested, visualize=False): actx = actx_factory() from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for n in [4, 6, 8]: mesh = mgen.generate_regular_rect_mesh( a=(-1,)*dim, b=(1,)*dim, nelements_per_axis=(n,)*dim) dcoll = DiscretizationCollection(actx, mesh, order=order) def f(x): result = make_obj_array([dcoll.zeros(actx) + (i+1) for i in range(dim)]) for i in range(dim-1): result = result * actx.np.sin(np.pi*x[i]) result = result * actx.np.cos(np.pi/2*x[dim-1]) return result def div_f(x): result = dcoll.zeros(actx) for i in range(dim-1): deriv = dcoll.zeros(actx) + (i+1) for j in range(i): deriv = deriv * actx.np.sin(np.pi*x[j]) deriv = deriv * np.pi*actx.np.cos(np.pi*x[i]) for j in range(i+1, dim-1): deriv = deriv * actx.np.sin(np.pi*x[j]) deriv = deriv * actx.np.cos(np.pi/2*x[dim-1]) result = result + deriv deriv = dcoll.zeros(actx) + dim for j in range(dim-1): deriv = deriv * actx.np.sin(np.pi*x[j]) deriv = deriv * (-np.pi/2*actx.np.sin(np.pi/2*x[dim-1])) result = result + deriv return result x = thaw(dcoll.nodes(), actx) if vectorize: u = make_obj_array([(i+1)*f(x) for i in range(dim)]) if not nested: u = np.stack(u, axis=0) else: u = f(x) def get_flux(u_tpair): dd = u_tpair.dd dd_allfaces = dd.with_dtag("all_faces") normal = thaw(dcoll.normal(dd), actx) flux = u_tpair.avg @ normal return op.project(dcoll, dd, dd_allfaces, flux) dd_allfaces = DOFDesc("all_faces") if form == "strong": div_u = ( op.local_div(dcoll, u) # No flux terms because u doesn't have inter-el jumps ) elif form == "weak": div_u = op.inverse_mass(dcoll, -op.weak_local_div(dcoll, u) + # noqa: W504 op.face_mass(dcoll, dd_allfaces, # Note: no boundary flux terms here because u_ext == u_int == 0 sum(get_flux(utpair) for utpair in op.interior_trace_pairs(dcoll, u)) ) ) else: raise ValueError("Invalid form argument.") if vectorize: expected_div_u = make_obj_array([(i+1)*div_f(x) for i in range(dim)]) else: expected_div_u = div_f(x) if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll, vis_order=order if dim == 3 else dim+3) filename = (f"test_divergence_{form}_{dim}_{order}" f"{'_vec' if vectorize else ''}{'_nested' if nested else ''}.vtu") vis.write_vtk_file(filename, [ ("u", u), ("div_u", div_u), ("expected_div_u", expected_div_u), ], overwrite=True) rel_linf_err = actx.to_numpy( op.norm(dcoll, div_u - expected_div_u, np.inf) / op.norm(dcoll, expected_div_u, np.inf)) eoc_rec.add_data_point(1./n, rel_linf_err) print("L^inf error:") print(eoc_rec) assert(eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11) # }}} # You can test individual routines by typing # $ python test_grudge.py 'test_routine()' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: pytest.main([__file__]) # vim: fdm=marker