"""grudge is the Hybrid'n'Easy Discontinuous Galerkin Environment.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function __copyright__ = "Copyright (C) 2007 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np def make_mesh(a, b, pml_width=0.25, **kwargs): from meshpy.geometry import GeometryBuilder, make_circle geob = GeometryBuilder() circle_centers = [(-1.5, 0), (1.5, 0)] for cent in circle_centers: geob.add_geometry(*make_circle(1, cent)) geob.wrap_in_box(1) geob.wrap_in_box(pml_width) mesh_mod = geob.mesher_module() mi = mesh_mod.MeshInfo() geob.set(mi) mi.set_holes(circle_centers) built_mi = mesh_mod.build(mi, **kwargs) def boundary_tagger(fvi, el, fn, points): return [] from grudge.mesh import make_conformal_mesh_ext from grudge.mesh.element import Triangle pts = np.asarray(built_mi.points, dtype=np.float64) return make_conformal_mesh_ext( pts, [Triangle(i, el, pts) for i, el in enumerate(built_mi.elements)], boundary_tagger) def main(write_output=True): from grudge.timestep.runge_kutta import LSRK4TimeStepper from math import sqrt, pi, exp from grudge.backends import guess_run_context rcon = guess_run_context() epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4*pi*1e-7 # N/A**2. epsilon = 1*epsilon0 mu = 1*mu0 c = 1/sqrt(mu*epsilon) pml_width = 0.5 #mesh = make_mesh(a=np.array((-1,-1,-1)), b=np.array((1,1,1)), #mesh = make_mesh(a=np.array((-3,-3)), b=np.array((3,3)), mesh = make_mesh(a=np.array((-1,-1)), b=np.array((1,1)), #mesh = make_mesh(a=np.array((-2,-2)), b=np.array((2,2)), pml_width=pml_width, max_volume=0.01) if rcon.is_head_rank: mesh_data = rcon.distribute_mesh(mesh) else: mesh_data = rcon.receive_mesh() class Current: def volume_interpolant(self, t, discr): from grudge.tools import make_obj_array result = discr.volume_zeros(kind="numpy", dtype=np.float64) omega = 6*c if omega*t > 2*pi: return make_obj_array([result, result, result]) x = make_obj_array(discr.nodes.T) r = np.sqrt(np.dot(x, x)) idx = r<0.3 result[idx] = (1+np.cos(pi*r/0.3))[idx] \ *np.sin(omega*t)**3 result = discr.convert_volume(result, kind=discr.compute_kind, dtype=discr.default_scalar_type) return make_obj_array([-result, result, result]) order = 3 discr = rcon.make_discretization(mesh_data, order=order, debug=["cuda_no_plan"]) from grudge.visualization import VtkVisualizer if write_output: vis = VtkVisualizer(discr, rcon, "em-%d" % order) from grudge.mesh import BTAG_ALL, BTAG_NONE from grudge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction from grudge.models.em import MaxwellOperator from grudge.models.pml import \ AbarbanelGottliebPMLMaxwellOperator, \ AbarbanelGottliebPMLTMMaxwellOperator, \ AbarbanelGottliebPMLTEMaxwellOperator op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon, mu, flux_type=1, current=Current(), pec_tag=BTAG_ALL, absorb_tag=BTAG_NONE, add_decay=True ) fields = op.assemble_ehpq(discr=discr) stepper = LSRK4TimeStepper() if rcon.is_head_rank: print("order %d" % order) print("#elements=", len(mesh.elements)) # diagnostics setup --------------------------------------------------- from pytools.log import LogManager, add_general_quantities, \ add_simulation_quantities, add_run_info if write_output: log_file_name = "maxwell-%d.dat" % order else: log_file_name = None logmgr = LogManager(log_file_name, "w", rcon.communicator) add_run_info(logmgr) add_general_quantities(logmgr) add_simulation_quantities(logmgr) discr.add_instrumentation(logmgr) stepper.add_instrumentation(logmgr) from pytools.log import IntervalTimer vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) from grudge.log import EMFieldGetter, add_em_quantities field_getter = EMFieldGetter(discr, op, lambda: fields) add_em_quantities(logmgr, op, field_getter) logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"]) from grudge.log import LpNorm class FieldIdxGetter: def __init__(self, whole_getter, idx): self.whole_getter = whole_getter self.idx = idx def __call__(self): return self.whole_getter()[self.idx] # timestep loop ------------------------------------------------------- t = 0 pml_coeff = op.coefficients_from_width(discr, width=pml_width) rhs = op.bind(discr, pml_coeff) try: from grudge.timestep import times_and_steps step_it = times_and_steps( final_time=4/c, logmgr=logmgr, max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields)) for step, t, dt in step_it: if step % 10 == 0 and write_output: e, h, p, q = op.split_ehpq(fields) visf = vis.make_file("em-%d-%04d" % (order, step)) #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \ #op.split_ehpq(rhs(t, fields)) j = Current().volume_interpolant(t, discr) vis.add_data(visf, [ ("e", discr.convert_volume(e, "numpy")), ("h", discr.convert_volume(h, "numpy")), ("p", discr.convert_volume(p, "numpy")), ("q", discr.convert_volume(q, "numpy")), ("j", discr.convert_volume(j, "numpy")), #("pml_rhs_e", pml_rhs_e), #("pml_rhs_h", pml_rhs_h), #("pml_rhs_p", pml_rhs_p), #("pml_rhs_q", pml_rhs_q), #("max_rhs_e", max_rhs_e), #("max_rhs_h", max_rhs_h), #("max_rhs_p", max_rhs_p), #("max_rhs_q", max_rhs_q), ], time=t, step=step) visf.close() fields = stepper(fields, t, dt, rhs) _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag") energies = [value for tick_nbr, value in energies_data] assert energies[-1] < max(energies) * 1e-2 finally: logmgr.close() if write_output: vis.close() if __name__ == "__main__": main() # entry points for py.test ---------------------------------------------------- from pytools.test import mark_test @mark_test.long def test_maxwell_pml(): main(write_output=False)