__copyright__ = """ Copyright (C) 2017 Ellis Hoag Copyright (C) 2017 Andreas Kloeckner Copyright (C) 2021 University of Illinois Board of Trustees """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest import os import numpy as np import pyopencl as cl import logging import sys from grudge.array_context import MPIPyOpenCLArrayContext, MPIPytatoArrayContext from arraycontext.container.traversal import thaw, freeze logger = logging.getLogger(__name__) logging.basicConfig() logger.setLevel(logging.INFO) from grudge import DiscretizationCollection from grudge.shortcuts import rk4_step from meshmode.dof_array import flat_norm from pytools.obj_array import flat_obj_array import grudge.op as op from testlib import SimpleTag # {{{ mpi test infrastructure DISTRIBUTED_ACTXS = [MPIPyOpenCLArrayContext, MPIPytatoArrayContext] def run_test_with_mpi(num_ranks, f, *args): import pytest pytest.importorskip("mpi4py") from pickle import dumps from base64 import b64encode invocation_info = b64encode(dumps((f, args))).decode() from subprocess import check_call # NOTE: CI uses OpenMPI; -x to pass env vars. MPICH uses -env check_call([ "mpiexec", "-np", str(num_ranks), "-x", "RUN_WITHIN_MPI=1", "-x", f"INVOCATION_INFO={invocation_info}", sys.executable, __file__]) def run_test_with_mpi_inner(): from pickle import loads from base64 import b64decode f, (actx_class, *args) = loads(b64decode(os.environ["INVOCATION_INFO"].encode())) cl_context = cl.create_some_context() queue = cl.CommandQueue(cl_context) from mpi4py import MPI comm = MPI.COMM_WORLD if actx_class is MPIPytatoArrayContext: actx = actx_class(comm, queue, mpi_base_tag=15000) elif actx_class is MPIPyOpenCLArrayContext: actx = actx_class(comm, queue, force_device_scalars=True, comm_tag_to_mpi_tag={SimpleTag: 15000}) else: raise ValueError("unknown actx_class") f(actx, *args) # }}} # {{{ func_comparison @pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS) @pytest.mark.parametrize("num_ranks", [2]) def test_func_comparison_mpi(actx_class, num_ranks): run_test_with_mpi( num_ranks, _test_func_comparison_mpi_communication_entrypoint, actx_class) def _test_func_comparison_mpi_communication_entrypoint(actx): """Discretize a function, communicate it, check that it matches the function discretized by the other end. """ comm = actx.mpi_communicator from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis from meshmode.mesh import BTAG_ALL num_parts = comm.Get_size() mesh_dist = MPIMeshDistributor(comm) if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-1,)*2, b=(1,)*2, nelements_per_axis=(2,)*2) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) else: local_mesh = mesh_dist.receive_mesh_part() dcoll = DiscretizationCollection(actx, local_mesh, order=5) x = thaw(dcoll.nodes(), actx) myfunc = actx.np.sin(np.dot(x, [2, 3])) from grudge.dof_desc import as_dofdesc dd_int = as_dofdesc("int_faces") dd_vol = as_dofdesc("vol") dd_af = as_dofdesc("all_faces") all_faces_func = op.project(dcoll, dd_vol, dd_af, myfunc) int_faces_func = op.project(dcoll, dd_vol, dd_int, myfunc) bdry_faces_func = op.project(dcoll, BTAG_ALL, dd_af, op.project(dcoll, dd_vol, BTAG_ALL, myfunc)) hopefully_zero = ( op.project( dcoll, "int_faces", "all_faces", dcoll.opposite_face_connection()(int_faces_func) ) + sum(op.project(dcoll, tpair.dd, "all_faces", tpair.int) for tpair in op.cross_rank_trace_pairs(dcoll, myfunc, comm_tag=SimpleTag)) ) - (all_faces_func - bdry_faces_func) error = actx.to_numpy(flat_norm(hopefully_zero, ord=np.inf)) print(__file__) with np.printoptions(threshold=100000000, suppress=True): logger.debug(hopefully_zero) logger.info("error: %.5e", error) assert error < 1e-14 # }}} # {{{ wave operator @pytest.mark.parametrize("actx_class", DISTRIBUTED_ACTXS) @pytest.mark.parametrize("num_ranks", [2]) def test_mpi_wave_op(actx_class, num_ranks): run_test_with_mpi(num_ranks, _test_mpi_wave_op_entrypoint, actx_class) def _test_mpi_wave_op_entrypoint(actx, visualize=False): comm = actx.mpi_communicator i_local_rank = comm.Get_rank() num_parts = comm.Get_size() from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 order = 4 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(16,)*dim) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() dcoll = DiscretizationCollection(actx, local_mesh, order=order) def source_f(actx, dcoll, t=0): source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim] source_width = 0.05 source_omega = 3 nodes = thaw(dcoll.nodes(), actx) source_center_dist = flat_obj_array( [nodes[i] - source_center[i] for i in range(dcoll.dim)] ) return ( actx.np.sin(source_omega*t) * actx.np.exp( -np.dot(source_center_dist, source_center_dist) / source_width**2 ) ) from grudge.models.wave import WeakWaveOperator from meshmode.mesh import BTAG_ALL, BTAG_NONE wave_op = WeakWaveOperator( dcoll, 0.1, source_f=source_f, dirichlet_tag=BTAG_NONE, neumann_tag=BTAG_NONE, radiation_tag=BTAG_ALL, flux_type="upwind", comm_tag=SimpleTag, ) fields = flat_obj_array( dcoll.zeros(actx), [dcoll.zeros(actx) for i in range(dcoll.dim)] ) # FIXME: Sketchy, empirically determined fudge factor dt = actx.to_numpy( 0.45 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields)) wave_op.check_bc_coverage(local_mesh) from logpyle import LogManager, \ add_general_quantities, \ add_run_info log_filename = None # NOTE: LogManager hangs when using a file on a shared directory. # log_filename = "grudge_log.dat" logmgr = LogManager(log_filename, "w", comm) add_run_info(logmgr) add_general_quantities(logmgr) def rhs(t, w): return wave_op.operator(t, w) compiled_rhs = actx.compile(rhs) final_t = 4 nsteps = int(final_t/dt) logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps) step = 0 from time import time t_last_step = time() if visualize: from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll) logmgr.tick_before() for step in range(nsteps): t = step*dt fields = rk4_step(fields, t=t, h=dt, f=compiled_rhs) fields = thaw(freeze(fields, actx), actx) norm = actx.to_numpy(op.norm(dcoll, fields, 2)) logger.info("[%04d] t = %.5e |u| = %.5e elapsed %.5e", step, t, norm, time() - t_last_step) if visualize: vis.write_parallel_vtk_file( comm, f"fld-wave-mpi-{type(actx).__name__}-{{rank:03d}}-{step:04d}.vtu", [ ("u", fields[0]), ("v", fields[1:]), ] ) assert norm < 1 t_last_step = time() logmgr.tick_after() logmgr.tick_before() logmgr.tick_after() logmgr.close() logger.info("Rank %d exiting", i_local_rank) # }}} if __name__ == "__main__": if "RUN_WITHIN_MPI" in os.environ: run_test_with_mpi_inner() elif len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker