Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • inducer/grudge
  • jdsteve2/grudge
  • eshoag2/grudge
  • mattwala/grudge
  • kaushikcfd/grudge
  • fikl2/grudge
6 results
Show changes
__copyright__ = "Copyright (C) 2021 University of Illinois Board of Trustees"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
import numpy as np
import pytest
import meshmode.mesh.generation as mgen
from arraycontext import pytest_generate_tests_for_array_contexts
from meshmode.discretization.poly_element import (
InterpolatoryEdgeClusteredGroupFactory,
QuadratureGroupFactory,
)
from meshmode.mesh import BTAG_ALL
from pytools.obj_array import make_obj_array
from grudge import geometry, op
from grudge.array_context import PytestPyOpenCLArrayContextFactory
from grudge.discretization import make_discretization_collection
from grudge.dof_desc import (
DISCR_TAG_BASE,
DISCR_TAG_QUAD,
DTAG_VOLUME_ALL,
FACE_RESTR_ALL,
VTAG_ALL,
BoundaryDomainTag,
as_dofdesc,
)
from grudge.trace_pair import bv_trace_pair
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts(
[PytestPyOpenCLArrayContextFactory])
# {{{ gradient
@pytest.mark.parametrize("form", ["strong", "weak", "weak-overint"])
@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("order", [2, 3])
@pytest.mark.parametrize("warp_mesh", [False, True])
@pytest.mark.parametrize(("vectorize", "nested"), [
(False, False),
(True, False),
(True, True)
])
def test_gradient(actx_factory, form, dim, order, vectorize, nested,
warp_mesh, visualize=False):
actx = actx_factory()
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for n in [8, 12, 16] if warp_mesh else [4, 6, 8]:
if warp_mesh:
if dim == 1:
pytest.skip("warped mesh in 1D not implemented")
mesh = mgen.generate_warped_rect_mesh(
dim=dim, order=order, nelements_side=n)
else:
mesh = mgen.generate_regular_rect_mesh(
a=(-1,)*dim, b=(1,)*dim,
nelements_per_axis=(n,)*dim)
dcoll = make_discretization_collection(
actx, mesh,
discr_tag_to_group_factory={
DISCR_TAG_BASE: InterpolatoryEdgeClusteredGroupFactory(order),
DISCR_TAG_QUAD: QuadratureGroupFactory(3 * order)
})
def f(x):
result = 1
for i in range(dim-1):
result = result * actx.np.sin(np.pi*x[i])
result = result * actx.np.cos(np.pi/2*x[dim-1])
return result
def grad_f(x):
result = make_obj_array([1 for _ in range(dim)])
for i in range(dim-1):
for j in range(i):
result[i] = result[i] * actx.np.sin(np.pi*x[j])
result[i] = result[i] * np.pi*actx.np.cos(np.pi*x[i])
for j in range(i+1, dim-1):
result[i] = result[i] * actx.np.sin(np.pi*x[j])
result[i] = result[i] * actx.np.cos(np.pi/2*x[dim-1])
for j in range(dim-1):
result[dim-1] = result[dim-1] * actx.np.sin(np.pi*x[j])
result[dim-1] = result[dim-1] * (-np.pi/2*actx.np.sin(np.pi/2*x[dim-1]))
return result
def vectorize_if_requested(vec):
if vectorize:
return make_obj_array([(i+1)*vec for i in range(dim)])
else:
return vec
def get_flux(u_tpair, dcoll=dcoll):
dd = u_tpair.dd
dd_allfaces = dd.with_domain_tag(
BoundaryDomainTag(FACE_RESTR_ALL, VTAG_ALL)
)
normal = geometry.normal(actx, dcoll, dd)
u_avg = u_tpair.avg
if vectorize:
if nested:
flux = make_obj_array([u_avg_i * normal for u_avg_i in u_avg])
else:
flux = np.outer(u_avg, normal)
else:
flux = u_avg * normal
return op.project(dcoll, dd, dd_allfaces, flux)
x = actx.thaw(dcoll.nodes())
u = vectorize_if_requested(f(x))
bdry_dd_base = as_dofdesc(BTAG_ALL)
bdry_x = actx.thaw(dcoll.nodes(bdry_dd_base))
bdry_u = vectorize_if_requested(f(bdry_x))
if form == "strong":
grad_u = (
op.local_grad(dcoll, u, nested=nested)
# No flux terms because u doesn't have inter-el jumps
)
elif form.startswith("weak"):
assert form in ["weak", "weak-overint"]
if "overint" in form:
quad_discr_tag = DISCR_TAG_QUAD
else:
quad_discr_tag = DISCR_TAG_BASE
allfaces_dd_base = as_dofdesc(FACE_RESTR_ALL, quad_discr_tag)
vol_dd_base = as_dofdesc(DTAG_VOLUME_ALL)
vol_dd_quad = vol_dd_base.with_discr_tag(quad_discr_tag)
bdry_dd_quad = bdry_dd_base.with_discr_tag(quad_discr_tag)
allfaces_dd_quad = allfaces_dd_base.with_discr_tag(quad_discr_tag)
grad_u = op.inverse_mass(dcoll,
-op.weak_local_grad(dcoll, vol_dd_quad,
op.project(dcoll, vol_dd_base, vol_dd_quad, u),
nested=nested)
+
op.face_mass(dcoll,
allfaces_dd_quad,
sum(get_flux(
op.project_tracepair(dcoll, allfaces_dd_quad, utpair))
for utpair in op.interior_trace_pairs(
dcoll, u, volume_dd=vol_dd_base))
+ get_flux(
op.project_tracepair(dcoll, bdry_dd_quad,
bv_trace_pair(dcoll, bdry_dd_base, u, bdry_u)))
)
)
else:
raise ValueError("Invalid form argument.")
if vectorize:
expected_grad_u = make_obj_array(
[(i+1)*grad_f(x) for i in range(dim)])
if not nested:
expected_grad_u = np.stack(expected_grad_u, axis=0)
else:
expected_grad_u = grad_f(x)
if visualize:
# the code below does not handle the vectorized case
assert not vectorize
from grudge.shortcuts import make_visualizer
vis = make_visualizer(dcoll, vis_order=order if dim == 3 else dim+3)
filename = (f"test_gradient_{form}_{dim}_{order}"
f"{'_vec' if vectorize else ''}{'_nested' if nested else ''}.vtu")
vis.write_vtk_file(filename, [
("u", u),
("grad_u", grad_u),
("expected_grad_u", expected_grad_u),
], overwrite=True)
rel_linf_err = actx.to_numpy(
op.norm(dcoll, grad_u - expected_grad_u, np.inf)
/ op.norm(dcoll, expected_grad_u, np.inf))
eoc_rec.add_data_point(1./n, rel_linf_err)
print("L^inf error:")
print(eoc_rec)
assert (eoc_rec.order_estimate() >= order - 0.5
or eoc_rec.max_error() < 1e-11)
# }}}
# {{{ divergence
@pytest.mark.parametrize("form", ["strong", "weak"])
@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("order", [2, 3])
@pytest.mark.parametrize(("vectorize", "nested"), [
(False, False),
(True, False),
(True, True)
])
def test_divergence(actx_factory, form, dim, order, vectorize, nested,
visualize=False):
actx = actx_factory()
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
for n in [4, 6, 8]:
mesh = mgen.generate_regular_rect_mesh(
a=(-1,)*dim, b=(1,)*dim,
nelements_per_axis=(n,)*dim)
dcoll = make_discretization_collection(actx, mesh, order=order)
def f(x, dcoll=dcoll):
result = make_obj_array([dcoll.zeros(actx) + (i+1) for i in range(dim)])
for i in range(dim-1):
result = result * actx.np.sin(np.pi*x[i])
result = result * actx.np.cos(np.pi/2*x[dim-1])
return result
def div_f(x, dcoll=dcoll):
result = dcoll.zeros(actx)
for i in range(dim-1):
deriv = dcoll.zeros(actx) + (i+1)
for j in range(i):
deriv = deriv * actx.np.sin(np.pi*x[j])
deriv = deriv * np.pi*actx.np.cos(np.pi*x[i])
for j in range(i+1, dim-1):
deriv = deriv * actx.np.sin(np.pi*x[j])
deriv = deriv * actx.np.cos(np.pi/2*x[dim-1])
result = result + deriv
deriv = dcoll.zeros(actx) + dim
for j in range(dim-1):
deriv = deriv * actx.np.sin(np.pi*x[j])
deriv = deriv * (-np.pi/2*actx.np.sin(np.pi/2*x[dim-1]))
result = result + deriv
return result
x = actx.thaw(dcoll.nodes())
if vectorize:
u = make_obj_array([(i+1)*f(x) for i in range(dim)])
if not nested:
u = np.stack(u, axis=0)
else:
u = f(x)
def get_flux(u_tpair, dcoll=dcoll):
dd = u_tpair.dd
dd_allfaces = dd.with_domain_tag(
BoundaryDomainTag(FACE_RESTR_ALL, VTAG_ALL)
)
normal = geometry.normal(actx, dcoll, dd)
flux = u_tpair.avg @ normal
return op.project(dcoll, dd, dd_allfaces, flux)
dd_allfaces = as_dofdesc(FACE_RESTR_ALL)
if form == "strong":
div_u = (
op.local_div(dcoll, u)
# No flux terms because u doesn't have inter-el jumps
)
elif form == "weak":
div_u = op.inverse_mass(dcoll,
-op.weak_local_div(dcoll, u)
+
op.face_mass(dcoll,
dd_allfaces,
# Note: no boundary flux terms here because u_ext == u_int == 0
sum(get_flux(utpair)
for utpair in op.interior_trace_pairs(dcoll, u))
)
)
else:
raise ValueError("Invalid form argument.")
if vectorize:
expected_div_u = make_obj_array([(i+1)*div_f(x) for i in range(dim)])
else:
expected_div_u = div_f(x)
if visualize:
from grudge.shortcuts import make_visualizer
vis = make_visualizer(dcoll, vis_order=order if dim == 3 else dim+3)
filename = (f"test_divergence_{form}_{dim}_{order}"
f"{'_vec' if vectorize else ''}{'_nested' if nested else ''}.vtu")
vis.write_vtk_file(filename, [
("u", u),
("div_u", div_u),
("expected_div_u", expected_div_u),
], overwrite=True)
rel_linf_err = actx.to_numpy(
op.norm(dcoll, div_u - expected_div_u, np.inf)
/ op.norm(dcoll, expected_div_u, np.inf))
eoc_rec.add_data_point(1./n, rel_linf_err)
print("L^inf error:")
print(eoc_rec)
assert (eoc_rec.order_estimate() >= order - 0.5
or eoc_rec.max_error() < 1e-11)
# }}}
# You can test individual routines by typing
# $ python test_grudge.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
pytest.main([__file__])
# vim: fdm=marker
__copyright__ = """
Copyright (C) 2021 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import logging
from dataclasses import dataclass
import mesh_data
import numpy as np
import pytest
from arraycontext import (
dataclass_array_container,
flatten,
pytest_generate_tests_for_array_contexts,
with_container_arithmetic,
)
from meshmode.dof_array import DOFArray
from pytools.obj_array import make_obj_array
from grudge import op
from grudge.array_context import PytestPyOpenCLArrayContextFactory
from grudge.discretization import make_discretization_collection
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts(
[PytestPyOpenCLArrayContextFactory])
@pytest.mark.parametrize(("mesh_size", "with_initial"), [
(4, False),
(4, True),
(0, False),
(0, True)
])
def test_nodal_reductions(actx_factory, mesh_size, with_initial):
actx = actx_factory()
builder = mesh_data.BoxMeshBuilder1D()
mesh = builder.get_mesh(mesh_size)
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return -actx.np.sin(10*x[0])
def g(x):
return actx.np.cos(2*x[0])
def h(x):
return -actx.np.tan(5*x[0])
fields = make_obj_array([f(x), g(x), h(x)])
f_ref = actx.to_numpy(flatten(fields[0], actx))
g_ref = actx.to_numpy(flatten(fields[1], actx))
h_ref = actx.to_numpy(flatten(fields[2], actx))
concat_fields = np.concatenate([f_ref, g_ref, h_ref])
for grudge_op, np_op in [(op.nodal_max, np.max),
(op.nodal_min, np.min),
(op.nodal_sum, np.sum)]:
extra_kwargs = {}
if with_initial:
if grudge_op is op.nodal_max:
extra_kwargs["initial"] = -100.
elif grudge_op is op.nodal_min:
extra_kwargs["initial"] = 100.
# nodal_min/nodal_max have default initial values, so they behave
# differently from numpy in the empty case
extra_np_only_kwargs = {}
if mesh_size == 0 and not with_initial:
if grudge_op is op.nodal_max:
extra_np_only_kwargs["initial"] = -np.inf
elif grudge_op is op.nodal_min:
extra_np_only_kwargs["initial"] = np.inf
# Componentwise reduction checks
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[0], **extra_kwargs)),
np_op(f_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[1], **extra_kwargs)),
np_op(g_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields[2], **extra_kwargs)),
np_op(h_ref, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
# Test nodal reductions work on object arrays
assert np.isclose(
actx.to_numpy(grudge_op(dcoll, "vol", fields, **extra_kwargs)),
np_op(concat_fields, **extra_kwargs, **extra_np_only_kwargs),
rtol=1e-13)
def test_elementwise_reductions(actx_factory):
actx = actx_factory()
builder = mesh_data.BoxMeshBuilder1D()
nelements = 4
mesh = builder.get_mesh(nelements)
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return actx.np.sin(x[0])
field = f(x)
mins = []
maxs = []
sums = []
for grp_f in field:
min_res = np.empty(grp_f.shape)
max_res = np.empty(grp_f.shape)
sum_res = np.empty(grp_f.shape)
for eidx in range(mesh.nelements):
element_data = actx.to_numpy(grp_f[eidx])
min_res[eidx, :] = np.min(element_data)
max_res[eidx, :] = np.max(element_data)
sum_res[eidx, :] = np.sum(element_data)
mins.append(actx.from_numpy(min_res))
maxs.append(actx.from_numpy(max_res))
sums.append(actx.from_numpy(sum_res))
ref_mins = DOFArray(actx, data=tuple(mins))
ref_maxs = DOFArray(actx, data=tuple(maxs))
ref_sums = DOFArray(actx, data=tuple(sums))
elem_mins = op.elementwise_min(dcoll, field)
elem_maxs = op.elementwise_max(dcoll, field)
elem_sums = op.elementwise_sum(dcoll, field)
assert actx.to_numpy(op.norm(dcoll, elem_mins - ref_mins, np.inf)) < 1.e-15
assert actx.to_numpy(op.norm(dcoll, elem_maxs - ref_maxs, np.inf)) < 1.e-15
assert actx.to_numpy(op.norm(dcoll, elem_sums - ref_sums, np.inf)) < 1.e-15
# {{{ Array container tests
@with_container_arithmetic(bcasts_across_obj_array=False,
eq_comparison=False,
rel_comparison=False,
_cls_has_array_context_attr=True,
)
@dataclass_array_container
@dataclass(frozen=True)
class MyContainer:
name: str
mass: DOFArray
momentum: np.ndarray
enthalpy: DOFArray
# NOTE: disable numpy doing any array math
__array_ufunc__ = None
@property
def array_context(self):
return self.mass.array_context
def test_nodal_reductions_with_container(actx_factory):
actx = actx_factory()
builder = mesh_data.BoxMeshBuilder2D()
mesh = builder.get_mesh(4)
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return -actx.np.sin(10*x[0]) * actx.np.cos(2*x[1])
def g(x):
return actx.np.cos(2*x[0]) * actx.np.sin(10*x[1])
def h(x):
return -actx.np.tan(5*x[0]) * actx.np.tan(0.5*x[1])
mass = f(x) + g(x)
momentum = make_obj_array([f(x)/g(x), h(x)])
enthalpy = h(x) - g(x)
ary_container = MyContainer(name="container",
mass=mass,
momentum=momentum,
enthalpy=enthalpy)
mass_ref = actx.to_numpy(flatten(mass, actx))
momentum_ref = np.concatenate([
actx.to_numpy(mom_i)
for mom_i in flatten(momentum, actx, leaf_class=DOFArray)])
enthalpy_ref = actx.to_numpy(flatten(enthalpy, actx))
concat_fields = np.concatenate([mass_ref, momentum_ref, enthalpy_ref])
for grudge_op, np_op in [(op.nodal_sum, np.sum),
(op.nodal_max, np.max),
(op.nodal_min, np.min)]:
assert np.isclose(actx.to_numpy(grudge_op(dcoll, "vol", ary_container)),
np_op(concat_fields), rtol=1e-13)
# Check norm reduction
assert np.isclose(actx.to_numpy(op.norm(dcoll, ary_container, np.inf)),
np.linalg.norm(concat_fields, ord=np.inf),
rtol=1e-13)
def test_elementwise_reductions_with_container(actx_factory):
actx = actx_factory()
builder = mesh_data.BoxMeshBuilder2D()
nelements = 4
mesh = builder.get_mesh(nelements)
dcoll = make_discretization_collection(actx, mesh, order=4)
x = actx.thaw(dcoll.nodes())
def f(x):
return actx.np.sin(x[0]) * actx.np.sin(x[1])
def g(x):
return actx.np.cos(x[0]) * actx.np.cos(x[1])
def h(x):
return actx.np.cos(x[0]) * actx.np.sin(x[1])
mass = 2*f(x) + 0.5*g(x)
momentum = make_obj_array([f(x)/g(x), h(x)])
enthalpy = 3*h(x) - g(x)
ary_container = MyContainer(name="container",
mass=mass,
momentum=momentum,
enthalpy=enthalpy)
def _get_ref_data(field):
mins = []
maxs = []
sums = []
for grp_f in field:
min_res = np.empty(grp_f.shape)
max_res = np.empty(grp_f.shape)
sum_res = np.empty(grp_f.shape)
for eidx in range(mesh.nelements):
element_data = actx.to_numpy(grp_f[eidx])
min_res[eidx, :] = np.min(element_data)
max_res[eidx, :] = np.max(element_data)
sum_res[eidx, :] = np.sum(element_data)
mins.append(actx.from_numpy(min_res))
maxs.append(actx.from_numpy(max_res))
sums.append(actx.from_numpy(sum_res))
min_field = DOFArray(actx, data=tuple(mins))
max_field = DOFArray(actx, data=tuple(maxs))
sums_field = DOFArray(actx, data=tuple(sums))
return min_field, max_field, sums_field
min_mass, max_mass, sums_mass = _get_ref_data(mass)
min_enthalpy, max_enthalpy, sums_enthalpy = _get_ref_data(enthalpy)
min_mom_x, max_mom_x, sums_mom_x = _get_ref_data(momentum[0])
min_mom_y, max_mom_y, sums_mom_y = _get_ref_data(momentum[1])
min_momentum = make_obj_array([min_mom_x, min_mom_y])
max_momentum = make_obj_array([max_mom_x, max_mom_y])
sums_momentum = make_obj_array([sums_mom_x, sums_mom_y])
reference_min = MyContainer(
name="Reference min",
mass=min_mass,
momentum=min_momentum,
enthalpy=min_enthalpy
)
reference_max = MyContainer(
name="Reference max",
mass=max_mass,
momentum=max_momentum,
enthalpy=max_enthalpy
)
reference_sum = MyContainer(
name="Reference sums",
mass=sums_mass,
momentum=sums_momentum,
enthalpy=sums_enthalpy
)
elem_mins = op.elementwise_min(dcoll, ary_container)
elem_maxs = op.elementwise_max(dcoll, ary_container)
elem_sums = op.elementwise_sum(dcoll, ary_container)
assert actx.to_numpy(op.norm(dcoll, elem_mins - reference_min, np.inf)) < 1.e-14
assert actx.to_numpy(op.norm(dcoll, elem_maxs - reference_max, np.inf)) < 1.e-14
assert actx.to_numpy(op.norm(dcoll, elem_sums - reference_sum, np.inf)) < 1.e-14
# }}}
# You can test individual routines by typing
# $ python test_grudge.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
pytest.main([__file__])
__copyright__ = """
Copyright (C) 2022 University of Illinois Board of Trustees
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from dataclasses import dataclass
import numpy as np
import numpy.linalg as la # noqa
from arraycontext import pytest_generate_tests_for_array_contexts
from grudge.array_context import PytestPyOpenCLArrayContextFactory
pytest_generate_tests = pytest_generate_tests_for_array_contexts(
[PytestPyOpenCLArrayContextFactory])
import logging
import pytest
from pytools.obj_array import make_obj_array
logger = logging.getLogger(__name__)
# {{{ map_subarrays and rec_map_subarrays
@dataclass(frozen=True, eq=True)
class _DummyScalar:
val: int
def test_map_subarrays():
"""Test map_subarrays."""
from grudge.tools import map_subarrays
# Scalar
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), 1)
assert result.dtype == int
assert np.all(result == np.array([1, 2]))
# Scalar, nested
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), 1, return_nested=True)
assert result.dtype == int
assert np.all(result == np.array([1, 2])) # Same as non-nested
# in_shape is whole array
result = map_subarrays(
lambda x: 2*x, (2,), (2,), np.array([1, 2]))
assert result.dtype == int
assert np.all(result == np.array([2, 4]))
# in_shape is whole array, nested
result = map_subarrays(
lambda x: 2*x, (2,), (2,), np.array([1, 2]), return_nested=True)
assert result.dtype == int
assert np.all(result == np.array([2, 4])) # Same as non-nested
# len(out_shape) == 0
result = map_subarrays(
np.sum, (2,), (), np.array([[1, 2], [2, 4]]))
assert result.dtype == int
assert np.all(result == np.array([3, 6]))
# len(out_shape) == 0, nested output
result = map_subarrays(
np.sum, (2,), (), np.array([[1, 2], [2, 4]]), return_nested=True)
assert np.all(result == np.array([3, 6])) # Same as non-nested output
# len(out_shape) == 0, non-numerical scalars
result = map_subarrays(
lambda x: _DummyScalar(x[0].val + x[1].val), (2,), (),
np.array([
[_DummyScalar(1), _DummyScalar(2)],
[_DummyScalar(2), _DummyScalar(4)]]))
assert result.dtype == object
assert result.shape == (2,)
assert result[0] == _DummyScalar(3)
assert result[1] == _DummyScalar(6)
# len(out_shape) != 0
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), np.array([1, 2]))
assert result.dtype == int
assert np.all(result == np.array([[1, 2], [2, 4]]))
# len(out_shape) != 0, nested
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), np.array([1, 2]), return_nested=True)
assert result.dtype == object
assert result.shape == (2,)
assert np.all(result[0] == np.array([1, 2]))
assert np.all(result[1] == np.array([2, 4]))
# len(out_shape) != 0, non-numerical scalars
result = map_subarrays(
lambda x: np.array([_DummyScalar(x), _DummyScalar(2*x)]), (), (2,),
np.array([1, 2]))
assert result.dtype == object
assert result.shape == (2, 2)
assert np.all(result[0] == np.array([_DummyScalar(1), _DummyScalar(2)]))
assert np.all(result[1] == np.array([_DummyScalar(2), _DummyScalar(4)]))
# Zero-size input array
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), np.empty((2, 0)))
assert result.dtype == object
assert result.shape == (2, 0, 2)
# Zero-size input array, nested
result = map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), np.empty((2, 0)),
return_nested=True)
assert result.dtype == object
assert result.shape == (2, 0)
def test_rec_map_subarrays():
"""Test rec_map_subarrays."""
from grudge.tools import rec_map_subarrays
# Scalar
result = rec_map_subarrays(
lambda x: np.array([x, 2*x]), (), (2,), 1)
assert result.dtype == int
assert np.all(result == np.array([1, 2]))
# Scalar, non-numerical
result = rec_map_subarrays(
lambda x: np.array([x.val, 2*x.val]), (), (2,), _DummyScalar(1),
scalar_cls=_DummyScalar)
assert result.dtype == int
assert np.all(result == np.array([1, 2]))
# Array of scalars
result = rec_map_subarrays(
np.sum, (2,), (), np.array([[1, 2], [2, 4]]))
assert result.dtype == int
assert np.all(result == np.array([3, 6]))
# Array of scalars, non-numerical
result = rec_map_subarrays(
lambda x: x[0].val + x[1].val, (2,), (),
np.array([
[_DummyScalar(1), _DummyScalar(2)],
[_DummyScalar(2), _DummyScalar(4)]]),
scalar_cls=_DummyScalar)
assert result.dtype == int
assert np.all(result == np.array([3, 6]))
# Array container
result = rec_map_subarrays(
np.sum, (2,), (), make_obj_array([np.array([1, 2]), np.array([2, 4])]))
assert result.dtype == object
assert result[0] == 3
assert result[1] == 6
# Array container, non-numerical scalars
result = rec_map_subarrays(
lambda x: x[0].val + x[1], (2,), (),
make_obj_array([
np.array([_DummyScalar(1), 2]),
np.array([_DummyScalar(2), 4])]),
scalar_cls=_DummyScalar)
assert result.dtype == object
assert result[0] == 3
assert result[1] == 6
# }}}
# You can test individual routines by typing
# $ python test_tools.py 'test_routine()'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
pytest.main([__file__])
# vim: fdm=marker
"""Minimal example of a grudge driver."""
from __future__ import division, print_function
__copyright__ = "Copyright (C) 2015 Andreas Kloeckner"
__copyright__ = "Copyright (C) 2021 University of Illinois Board of Trustees"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
......@@ -25,61 +21,53 @@ THE SOFTWARE.
"""
import numpy as np
import pyopencl as cl
import sumpy.point_calculus as spy
from grudge import bind
import logging
import numpy as np
def sumpy_test_3D(order, cl_ctx, queue):
epsilon = 1
mu = 1
import meshmode.mesh.generation as mgen
from arraycontext import pytest_generate_tests_for_array_contexts
from meshmode.dof_array import DOFArray
kx, ky, kz = factors = [n*np.pi for n in (1, 2, 2)]
k = np.sqrt(sum(f**2 for f in factors))
from grudge.array_context import PytestPyOpenCLArrayContextFactory
from grudge.discretization import make_discretization_collection
from grudge.trace_pair import TracePair
patch = spy.CalculusPatch((0.4, 0.3, 0.4))
from grudge.discretization import PointsDiscretization
pdiscr = PointsDiscretization(cl.array.to_device(queue, patch.points))
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts(
[PytestPyOpenCLArrayContextFactory])
from grudge.models.em import get_rectangular_cavity_mode
sym_mode = get_rectangular_cavity_mode(1, (1, 2, 2))
fields = bind(pdiscr, sym_mode)(queue, t=0, epsilon=epsilon, mu=mu)
for i in range(len(fields)):
if isinstance(fields[i], (int, float)):
fields[i] = np.zeros(patch.points.shape[1])
else:
fields[i] = fields[i].get()
def test_trace_pair(actx_factory):
"""Simple smoke test for :class:`grudge.trace_pair.TracePair`."""
actx = actx_factory()
dim = 3
order = 1
n = 4
e = np.array([fields[0], fields[1], fields[2]])
h = np.array([fields[3], fields[4], fields[5]])
print(frequency_domain_maxwell(patch, e, h, k))
return
mesh = mgen.generate_regular_rect_mesh(
a=(-1,)*dim, b=(1,)*dim,
nelements_per_axis=(n,)*dim)
dcoll = make_discretization_collection(actx, mesh, order=order)
def frequency_domain_maxwell(cpatch, e, h, k):
mu = 1
epsilon = 1
c = 1/np.sqrt(mu*epsilon)
omega = k*c
b = mu*h
d = epsilon*e
# https://en.wikipedia.org/w/index.php?title=Maxwell%27s_equations&oldid=798940325#Macroscopic_formulation
# assumed time dependence exp(-1j*omega*t)
# Agrees with Jackson, Third Ed., (8.16)
resid_faraday = np.vstack(cpatch.curl(e)) - 1j * omega * b
resid_ampere = np.vstack(cpatch.curl(h)) + 1j * omega * d
resid_div_e = cpatch.div(e)
resid_div_h = cpatch.div(h)
return (resid_faraday, resid_ampere, resid_div_e, resid_div_h)
rng = np.random.default_rng(1234)
def rand():
return DOFArray(
actx,
tuple(actx.from_numpy(
rng.uniform(size=(grp.nelements, grp.nunit_dofs)))
for grp in dcoll.discr_from_dd("vol").groups))
if __name__ == "__main__":
cl_ctx = cl.create_some_context()
queue = cl.CommandQueue(cl_ctx)
from grudge.dof_desc import DD_VOLUME_ALL
interior = rand()
exterior = rand()
tpair = TracePair(DD_VOLUME_ALL, interior=interior, exterior=exterior)
print("Doing Sumpy Test")
sumpy_test_3D(4, cl_ctx, queue)
import grudge.op as op
assert op.norm(dcoll, tpair.avg - 0.5*(exterior + interior), np.inf) == 0
assert op.norm(dcoll, tpair.diff - (exterior - interior), np.inf) == 0
assert op.norm(dcoll, tpair.int - interior, np.inf) == 0
assert op.norm(dcoll, tpair.ext - exterior, np.inf) == 0