import numpy as np import pyopencl as cl import sys import logging import os # Configure the root logger logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING")) logger = logging.getLogger(__name__) # Set the logger level of this module to INFO so that logging outputs of this module # are shown logger.setLevel(logging.INFO) # `process_elapsed` in `ProcessTimer` is only supported for Python >= 3.3 SUPPORTS_PROCESS_TIME = (sys.version_info >= (3, 3)) def demo_cost_model(): if not SUPPORTS_PROCESS_TIME: raise NotImplementedError( "Currently this script uses process time which only works on Python>=3.3" ) from boxtree.pyfmmlib_integration import FMMLibExpansionWrangler nsources_list = [1000, 2000, 3000, 4000, 5000] ntargets_list = [1000, 2000, 3000, 4000, 5000] dims = 3 dtype = np.float64 ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) traversals = [] traversals_dev = [] level_to_orders = [] timing_results = [] def fmm_level_to_nterms(tree, ilevel): return 10 for nsources, ntargets in zip(nsources_list, ntargets_list): # {{{ Generate sources, targets and target_radii from boxtree.tools import make_normal_particle_array as p_normal sources = p_normal(queue, nsources, dims, dtype, seed=15) targets = p_normal(queue, ntargets, dims, dtype, seed=18) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(queue.context, seed=22) target_radii = rng.uniform( queue, ntargets, a=0, b=0.05, dtype=dtype ).get() # }}} # {{{ Generate tree and traversal from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb( queue, sources, targets=targets, target_radii=target_radii, stick_out_factor=0.15, max_particles_in_box=30, debug=True ) from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2) trav_dev, _ = tg(queue, tree, debug=True) trav = trav_dev.get(queue=queue) traversals.append(trav) traversals_dev.append(trav_dev) # }}} wrangler = FMMLibExpansionWrangler(trav.tree, 0, fmm_level_to_nterms) level_to_orders.append(wrangler.level_nterms) timing_data = {} from boxtree.fmm import drive_fmm src_weights = np.random.rand(tree.nsources).astype(tree.coord_dtype) drive_fmm(trav, wrangler, src_weights, timing_data=timing_data) timing_results.append(timing_data) time_field_name = "process_elapsed" from boxtree.cost import CLFMMCostModel from boxtree.cost import pde_aware_translation_cost_model cost_model = CLFMMCostModel(queue, pde_aware_translation_cost_model) model_results = [] for icase in range(len(traversals)-1): traversal = traversals_dev[icase] model_results.append( cost_model( traversal, level_to_orders[icase], CLFMMCostModel.get_constantone_calibration_params(), per_box=False ) ) params = cost_model.estimate_calibration_params( model_results, timing_results[:-1], time_field_name=time_field_name ) predicted_time = cost_model( traversals_dev[-1], level_to_orders[-1], params, per_box=False ) for field in ["form_multipoles", "eval_direct", "multipole_to_local", "eval_multipoles", "form_locals", "eval_locals", "coarsen_multipoles", "refine_locals"]: logger.info("predicted time for {0}: {1}".format( field, str(predicted_time[field]) )) logger.info("actual time for {0}: {1}".format( field, str(timing_results[-1][field]["process_elapsed"]) )) if __name__ == '__main__': demo_cost_model()