__copyright__ = "Copyright (C) 2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import numpy as np import numpy.linalg as la import pytest from arraycontext import pytest_generate_tests_for_array_contexts from boxtree.array_context import _acf # noqa: F401 from boxtree.array_context import PytestPyOpenCLArrayContextFactory from boxtree.constant_one import ( ConstantOneExpansionWrangler, ConstantOneTreeIndependentDataForWrangler) from boxtree.tools import ( # noqa: F401 make_normal_particle_array as p_normal, make_surface_particle_array as p_surface, make_uniform_particle_array as p_uniform, particle_array_to_host) logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # {{{ ref fmmlib pot computation def get_fmmlib_ref_pot(wrangler, weights, sources_host, targets_host, helmholtz_k, dipole_vec=None): dims = sources_host.shape[0] eqn_letter = "h" if helmholtz_k else "l" use_dipoles = dipole_vec is not None import pyfmmlib fmmlib_routine = getattr( pyfmmlib, "%spot%s%ddall%s_vec" % ( eqn_letter, "fld" if dims == 3 else "grad", dims, "_dp" if use_dipoles else "")) kwargs = {} if dims == 3: kwargs["iffld"] = False else: kwargs["ifgrad"] = False kwargs["ifhess"] = False if use_dipoles: if helmholtz_k == 0 and dims == 2: kwargs["dipstr"] = -weights * (dipole_vec[0] + 1j * dipole_vec[1]) else: kwargs["dipstr"] = weights kwargs["dipvec"] = dipole_vec else: kwargs["charge"] = weights if helmholtz_k: kwargs["zk"] = helmholtz_k return wrangler.finalize_potentials( fmmlib_routine( sources=sources_host, targets=targets_host, **kwargs)[0], template_ary=weights) # }}} # {{{ fmm interaction completeness test class ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder( ConstantOneExpansionWrangler): def __init__(self, tree_indep, traversal, filtered_targets): super().__init__(tree_indep, traversal) self.filtered_targets = filtered_targets def _get_target_slice(self, ibox): pstart = self.filtered_targets.box_target_starts[ibox] return slice( pstart, pstart + self.filtered_targets.box_target_counts_nonchild[ibox]) def output_zeros(self): return np.zeros(self.filtered_targets.nfiltered_targets, dtype=np.float64) def reorder_potentials(self, potentials): tree_order_all_potentials = np.zeros(self.tree.ntargets, potentials.dtype) tree_order_all_potentials[ self.filtered_targets.unfiltered_from_filtered_target_indices] \ = potentials return tree_order_all_potentials[self.tree.sorted_target_ids] class ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder( ConstantOneExpansionWrangler): def __init__(self, tree_indep, traversal, filtered_targets): super().__init__(tree_indep, traversal) self.filtered_targets = filtered_targets def _get_target_slice(self, ibox): user_target_ids = self.filtered_targets.target_lists[ self.filtered_targets.target_starts[ibox]: self.filtered_targets.target_starts[ibox+1]] return self.tree.sorted_target_ids[user_target_ids] @pytest.mark.parametrize("well_sep_is_n_away", [1, 2]) @pytest.mark.parametrize(("dims", "nsources_req", "ntargets_req", "who_has_extent", "source_gen", "target_gen", "filter_kind", "extent_norm", "from_sep_smaller_crit"), [ (1, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"), (2, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"), (2, 5 * 10**4, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501 (2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501 (3, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"), (3, 5 * 10**5, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501 (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501 (2, 10**5, None, "", p_normal, p_normal, "user", "linf", "static_linf"), (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "user", "linf", "static_linf"), # noqa: E501 (2, 10**5, None, "", p_normal, p_normal, "tree", "linf", "static_linf"), (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "tree", "linf", "static_linf"), # noqa: E501 (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"), # noqa: E501 (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "precise_linf"), # noqa: E501 (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "precise_linf"), # noqa: E501 (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "static_l2"), # noqa: E501 ]) def test_fmm_completeness(actx_factory, dims, nsources_req, ntargets_req, who_has_extent, source_gen, target_gen, filter_kind, well_sep_is_n_away, extent_norm, from_sep_smaller_crit): """Tests whether the built FMM traversal structures and driver completely capture all interactions. """ actx = actx_factory() devname = actx.queue.device.name.lower() if (dims == 1 and actx.queue.device.platform.name == "Portable Computing Language" and ("nvidia" in devname or "tesla" in devname)): pytest.xfail("1D FMM fails to build on POCL Nvidia") sources_have_extent = "s" in who_has_extent targets_have_extent = "t" in who_has_extent dtype = np.float64 try: sources = source_gen(actx.queue, nsources_req, dims, dtype, seed=15) nsources = len(sources[0]) if ntargets_req is None: # This says "same as sources" to the tree builder. targets = None ntargets = ntargets_req else: targets = target_gen(actx.queue, ntargets_req, dims, dtype, seed=16) ntargets = len(targets[0]) except ImportError: pytest.skip("loopy not available, but needed for particle array " "generation") rng = np.random.default_rng(12) if sources_have_extent: source_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (nsources)).astype(dtype) ) else: source_radii = None if targets_have_extent: target_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (ntargets,)).astype(dtype) ) else: target_radii = None from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=30, source_radii=source_radii, target_radii=target_radii, debug=True, stick_out_factor=0.25, extent_norm=extent_norm) if 0: tree = tree.get(queue=actx.queue) tree.plot() import matplotlib.pyplot as pt pt.show() from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context, well_sep_is_n_away=well_sep_is_n_away, from_sep_smaller_crit=from_sep_smaller_crit) trav, _ = tbuild(actx.queue, tree, debug=True) if who_has_extent: pre_merge_trav = trav trav = trav.merge_close_lists(actx.queue) #weights = np.random.randn(nsources) weights = np.ones(nsources) weights_sum = np.sum(weights) host_trav = trav.get(queue=actx.queue) host_tree = host_trav.tree if who_has_extent: pre_merge_host_trav = pre_merge_trav.get(queue=actx.queue) from boxtree.tree import ParticleListFilter plfilt = ParticleListFilter(actx.context) tree_indep = ConstantOneTreeIndependentDataForWrangler() if filter_kind: flags = actx.from_numpy( rng.integers(0, 2, ntargets or nsources, dtype=np.int8) ) if filter_kind == "user": filtered_targets = plfilt.filter_target_lists_in_user_order( actx.queue, tree, flags) wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder( tree_indep, host_trav, filtered_targets.get(queue=actx.queue)) elif filter_kind == "tree": filtered_targets = plfilt.filter_target_lists_in_tree_order( actx.queue, tree, flags) wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder( tree_indep, host_trav, filtered_targets.get(queue=actx.queue)) else: raise ValueError("unsupported value of 'filter_kind'") else: wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav) flags = 1 + actx.zeros(ntargets or nsources, dtype=np.int8) if ntargets is None and not filter_kind: # This check only works for targets == sources. assert np.all( wrangler.reorder_potentials(wrangler.reorder_sources(weights)) == weights) from boxtree.fmm import drive_fmm pot = drive_fmm(wrangler, (weights,)) if filter_kind: pot = pot[actx.to_numpy(flags) > 0] rel_err = la.norm((pot - weights_sum) / nsources) good = rel_err < 1e-8 # {{{ build, evaluate matrix (and identify incorrect interactions) if 0 and not good: mat = np.zeros((ntargets, nsources), dtype) from pytools import ProgressBar pb = ProgressBar("matrix", nsources) for i in range(nsources): unit_vec = np.zeros(nsources, dtype=dtype) unit_vec[i] = 1 mat[:, i] = drive_fmm(host_trav, wrangler, (unit_vec,)) pb.progress() pb.finished() import matplotlib.pyplot as pt if 0: pt.imshow(mat) pt.colorbar() pt.show() incorrect_tgts, incorrect_srcs = np.where(mat != 1) if 1 and len(incorrect_tgts): from boxtree.visualization import TreePlotter plotter = TreePlotter(host_tree) plotter.draw_tree(fill=False, edgecolor="black") plotter.draw_box_numbers() plotter.set_bounding_box() tree_order_incorrect_tgts = \ host_tree.indices_to_tree_target_order(incorrect_tgts) tree_order_incorrect_srcs = \ host_tree.indices_to_tree_source_order(incorrect_srcs) src_boxes = [ host_tree.find_box_nr_for_source(i) for i in tree_order_incorrect_srcs] tgt_boxes = [ host_tree.find_box_nr_for_target(i) for i in tree_order_incorrect_tgts] print(src_boxes) print(tgt_boxes) # plot all sources/targets if 0: pt.plot( host_tree.targets[0], host_tree.targets[1], "v", alpha=0.9) pt.plot( host_tree.sources[0], host_tree.sources[1], "gx", alpha=0.9) # plot offending sources/targets if 0: pt.plot( host_tree.targets[0][tree_order_incorrect_tgts], host_tree.targets[1][tree_order_incorrect_tgts], "rv") pt.plot( host_tree.sources[0][tree_order_incorrect_srcs], host_tree.sources[1][tree_order_incorrect_srcs], "go") pt.gca().set_aspect("equal") from boxtree.visualization import draw_box_lists draw_box_lists( plotter, pre_merge_host_trav if who_has_extent else host_trav, # pylint: disable=possibly-used-before-assignment # noqa: E501 22) # from boxtree.visualization import draw_same_level_non_well_sep_boxes # draw_same_level_non_well_sep_boxes(plotter, host_trav, 2) pt.show() # }}} if 0 and not good: import matplotlib.pyplot as pt pt.plot(pot-weights_sum) pt.show() if 0 and not good: import matplotlib.pyplot as pt filt_targets = [ host_tree.targets[0][actx.to_numpy(flags > 0)], host_tree.targets[1][actx.to_numpy(flags > 0)], ] host_tree.plot() bad = np.abs(pot - weights_sum) >= 1e-3 bad_targets = [ filt_targets[0][bad], filt_targets[1][bad], ] print(bad_targets[0].shape) pt.plot(filt_targets[0], filt_targets[1], "x") pt.plot(bad_targets[0], bad_targets[1], "v") pt.show() assert good # }}} # {{{ test fmmlib integration @pytest.mark.parametrize("dims", [2, 3]) @pytest.mark.parametrize("use_dipoles", [True, False]) @pytest.mark.parametrize("helmholtz_k", [0, 2]) def test_pyfmmlib_fmm(actx_factory, dims, use_dipoles, helmholtz_k): pytest.importorskip("pyfmmlib") actx = actx_factory() nsources = 3000 ntargets = 1000 dtype = np.float64 sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = ( p_normal(actx.queue, ntargets, dims, dtype, seed=18) + np.array([2, 0, 0])[:dims]) sources_host = particle_array_to_host(sources) targets_host = particle_array_to_host(targets) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context) trav, _ = tbuild(actx.queue, tree, debug=True) trav = trav.get(queue=actx.queue) rng = np.random.default_rng(20) weights = rng.uniform(0.0, 1.0, (nsources,)) if use_dipoles: np.random.seed(13) dipole_vec = np.random.randn(dims, nsources) else: dipole_vec = None if dims == 2 and helmholtz_k == 0: base_order = 20 else: base_order = 10 def fmm_level_to_order(tree, lev): result = base_order if lev < 3 and helmholtz_k: # exercise order-varies-by-level capability result += 5 if use_dipoles: result += 1 return result from boxtree.pyfmmlib_integration import ( FMMLibExpansionWrangler, FMMLibTreeIndependentDataForWrangler, Kernel) tree_indep = FMMLibTreeIndependentDataForWrangler( trav.tree.dimensions, Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE) wrangler = FMMLibExpansionWrangler( tree_indep, trav, helmholtz_k=helmholtz_k, fmm_level_to_order=fmm_level_to_order, dipole_vec=dipole_vec) from boxtree.fmm import drive_fmm timing_data = {} pot = drive_fmm(wrangler, (weights,), timing_data=timing_data) print(timing_data) assert timing_data # {{{ ref fmmlib computation logger.info("computing direct (reference) result") ref_pot = get_fmmlib_ref_pot(wrangler, weights, sources_host.T, targets_host.T, helmholtz_k, dipole_vec) rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf) logger.info("relative l2 error vs fmmlib direct: %g", rel_err) assert rel_err < 1e-5, rel_err # }}} # {{{ check against sumpy try: import sumpy # noqa except ImportError: have_sumpy = False from warnings import warn warn("sumpy unavailable: cannot compute independent reference " "values for pyfmmlib", stacklevel=1) else: have_sumpy = True if have_sumpy: from sumpy.kernel import ( # pylint:disable=import-error DirectionalSourceDerivative, HelmholtzKernel, LaplaceKernel) from sumpy.p2p import P2P # pylint:disable=import-error sumpy_extra_kwargs = {} if helmholtz_k: knl = HelmholtzKernel(dims) sumpy_extra_kwargs["k"] = helmholtz_k else: knl = LaplaceKernel(dims) if use_dipoles: knl = DirectionalSourceDerivative(knl) sumpy_extra_kwargs["src_derivative_dir"] = dipole_vec p2p = P2P(actx.context, [knl], exclude_self=False) evt, (sumpy_ref_pot,) = p2p( actx.queue, targets, sources, (weights,), out_host=True, **sumpy_extra_kwargs) sumpy_rel_err = ( la.norm(pot - sumpy_ref_pot, np.inf) / la.norm(sumpy_ref_pot, np.inf)) logger.info("relative l2 error vs sumpy direct: %g", sumpy_rel_err) assert sumpy_rel_err < 1e-5, sumpy_rel_err # }}} # }}} # {{{ test fmmlib numerical stability @pytest.mark.parametrize("dims", [2, 3]) @pytest.mark.parametrize("helmholtz_k", [0, 2]) @pytest.mark.parametrize("order", [35]) def test_pyfmmlib_numerical_stability(actx_factory, dims, helmholtz_k, order): pytest.importorskip("pyfmmlib") actx = actx_factory() nsources = 30 dtype = np.float64 # The input particles are arranged with geometrically increasing/decreasing # spacing along a line, to build a deep tree that stress-tests the # translations. particle_line = np.array([2**-i for i in range(nsources//2)], dtype=dtype) particle_line = np.hstack([particle_line, 3 - particle_line]) zero = np.zeros(nsources, dtype=dtype) sources = np.vstack([ particle_line, zero, zero])[:dims] targets = sources * (1 + 1e-3) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=2, debug=True) assert tree.nlevels >= 15 from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context) trav, _ = tbuild(actx.queue, tree, debug=True) trav = trav.get(queue=actx.queue) weights = np.ones_like(sources[0]) from boxtree.pyfmmlib_integration import ( FMMLibExpansionWrangler, FMMLibRotationData, FMMLibTreeIndependentDataForWrangler, Kernel) def fmm_level_to_order(tree, lev): return order tree_indep = FMMLibTreeIndependentDataForWrangler( trav.tree.dimensions, Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE) wrangler = FMMLibExpansionWrangler( tree_indep, trav, helmholtz_k=helmholtz_k, fmm_level_to_order=fmm_level_to_order, rotation_data=FMMLibRotationData(actx.queue, trav)) from boxtree.fmm import drive_fmm pot = drive_fmm(wrangler, (weights,)) assert not np.isnan(pot).any() # {{{ ref fmmlib computation logger.info("computing direct (reference) result") ref_pot = get_fmmlib_ref_pot(wrangler, weights, sources, targets, helmholtz_k) rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf) logger.info("relative l2 error vs fmmlib direct: %g", rel_err) if dims == 2: error_bound = (1/2) ** (1 + order) else: error_bound = (3/4) ** (1 + order) assert rel_err < error_bound, rel_err # }}} # }}} # {{{ test particle count thresholding in traversal generation @pytest.mark.parametrize("enable_extents", [True, False]) def test_interaction_list_particle_count_thresholding(actx_factory, enable_extents): actx = actx_factory() dims = 2 nsources = 1000 ntargets = 1000 dtype = np.float64 max_particles_in_box = 30 # Ensure that we have underfilled boxes. from_sep_smaller_min_nsources_cumul = 1 + max_particles_in_box from boxtree.fmm import drive_fmm sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = p_normal(actx.queue, ntargets, dims, dtype, seed=15) rng = np.random.default_rng(22) if enable_extents: target_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (ntargets,)).astype(dtype) ) else: target_radii = None from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=max_particles_in_box, target_radii=target_radii, debug=True, stick_out_factor=0.25) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context) trav, _ = tbuild(actx.queue, tree, debug=True, _from_sep_smaller_min_nsources_cumul=from_sep_smaller_min_nsources_cumul) weights = np.ones(nsources) weights_sum = np.sum(weights) host_trav = trav.get(queue=actx.queue) tree_indep = ConstantOneTreeIndependentDataForWrangler() wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav) pot = drive_fmm(wrangler, (weights,)) assert np.all(pot == weights_sum) # }}} # {{{ test fmm with float32 dtype @pytest.mark.parametrize("enable_extents", [True, False]) def test_fmm_float32(actx_factory, enable_extents): actx = actx_factory() from pyopencl.characterize import has_struct_arg_count_bug if has_struct_arg_count_bug(actx.queue.device, actx.context): pytest.xfail("won't work on devices with the struct arg count issue") dims = 2 nsources = 1000 ntargets = 1000 dtype = np.float32 from boxtree.fmm import drive_fmm sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = p_normal(actx.queue, ntargets, dims, dtype, seed=15) rng = np.random.default_rng(12) if enable_extents: target_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (ntargets,)).astype(dtype) ) else: target_radii = None from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=30, target_radii=target_radii, debug=True, stick_out_factor=0.25) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context) trav, _ = tbuild(actx.queue, tree, debug=True) weights = np.ones(nsources) weights_sum = np.sum(weights) host_trav = trav.get(queue=actx.queue) tree_indep = ConstantOneTreeIndependentDataForWrangler() wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav) pot = drive_fmm(wrangler, (weights,)) assert np.all(pot == weights_sum) # }}} # {{{ test with fmm optimized 3d m2l @pytest.mark.parametrize("well_sep_is_n_away", (1, 2)) @pytest.mark.parametrize("helmholtz_k", (0, 2)) @pytest.mark.parametrize("nsrcntgts", (20, 10000)) def test_fmm_with_optimized_3d_m2l(actx_factory, nsrcntgts, helmholtz_k, well_sep_is_n_away): pytest.importorskip("pyfmmlib") actx = actx_factory() dims = 3 nsources = ntargets = nsrcntgts // 2 dtype = np.float64 sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = ( p_normal(actx.queue, ntargets, dims, dtype, seed=18) + np.array([2, 0, 0])[:dims]) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(actx.context) trav, _ = tbuild(actx.queue, tree, debug=True) trav = trav.get(queue=actx.queue) rng = np.random.default_rng(20) weights = rng.uniform(0.0, 1.0, (nsources,)) base_order = 10 def fmm_level_to_order(tree, lev): result = base_order if lev < 3 and helmholtz_k: # exercise order-varies-by-level capability result += 5 return result from boxtree.pyfmmlib_integration import ( FMMLibExpansionWrangler, FMMLibRotationData, FMMLibTreeIndependentDataForWrangler, Kernel) tree_indep = FMMLibTreeIndependentDataForWrangler( trav.tree.dimensions, Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE) baseline_wrangler = FMMLibExpansionWrangler( tree_indep, trav, helmholtz_k=helmholtz_k, fmm_level_to_order=fmm_level_to_order) optimized_wrangler = FMMLibExpansionWrangler( tree_indep, trav, helmholtz_k=helmholtz_k, fmm_level_to_order=fmm_level_to_order, rotation_data=FMMLibRotationData(actx.queue, trav)) from boxtree.fmm import drive_fmm baseline_timing_data = {} baseline_pot = drive_fmm( baseline_wrangler, (weights,), timing_data=baseline_timing_data) optimized_timing_data = {} optimized_pot = drive_fmm( optimized_wrangler, (weights,), timing_data=optimized_timing_data) baseline_time = baseline_timing_data["multipole_to_local"]["process_elapsed"] if baseline_time is not None: print("Baseline M2L time : %#.4g s" % baseline_time) opt_time = optimized_timing_data["multipole_to_local"]["process_elapsed"] if opt_time is not None: print("Optimized M2L time: %#.4g s" % opt_time) assert np.allclose(baseline_pot, optimized_pot, atol=1e-13, rtol=1e-13) # }}} # You can test individual routines by typing # $ python test_fmm.py 'test_routine(_acf)' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker