from __future__ import division from __future__ import absolute_import from __future__ import print_function import six from six.moves import range __copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import sys import pytest import logging import pyopencl as cl from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from boxtree.tools import make_normal_particle_array logger = logging.getLogger(__name__) # {{{ bounding box test @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("dims", [2, 3]) @pytest.mark.parametrize("nparticles", [9, 4096, 10**5]) def test_bounding_box(ctx_getter, dtype, dims, nparticles): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree.tools import AXIS_NAMES from boxtree.bounding_box import BoundingBoxFinder bbf = BoundingBoxFinder(ctx) axis_names = AXIS_NAMES[:dims] logger.info("%s - %s %s" % (dtype, dims, nparticles)) particles = make_normal_particle_array(queue, nparticles, dims, dtype) bbox_min = [np.min(x.get()) for x in particles] bbox_max = [np.max(x.get()) for x in particles] bbox_cl, evt = bbf(particles, radii=None) bbox_cl = bbox_cl.get() bbox_min_cl = np.empty(dims, dtype) bbox_max_cl = np.empty(dims, dtype) for i, ax in enumerate(axis_names): bbox_min_cl[i] = bbox_cl["min_"+ax] bbox_max_cl[i] = bbox_cl["max_"+ax] assert (bbox_min == bbox_min_cl).all() assert (bbox_max == bbox_max_cl).all() # }}} # {{{ test basic (no source/target distinction) tree build def run_build_test(builder, queue, dims, dtype, nparticles, do_plot, max_particles_in_box=None, max_leaf_refine_weight=None, refine_weights=None, **kwargs): dtype = np.dtype(dtype) if dtype == np.float32: tol = 1e-4 elif dtype == np.float64: tol = 1e-12 else: raise RuntimeError("unsupported dtype: %s" % dtype) if (dtype == np.float32 and dims == 2 and queue.device.platform.name == "Portable Computing Language"): # arg list lenghts disagree pytest.xfail("2D float doesn't work on POCL") logger.info(75*"-") if max_particles_in_box is not None: logger.info("%dD %s - %d particles - max %d per box - %s" % ( dims, dtype.type.__name__, nparticles, max_particles_in_box, " - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs)))) else: logger.info("%dD %s - %d particles - max leaf weight %d - %s" % ( dims, dtype.type.__name__, nparticles, max_leaf_refine_weight, " - ".join("%s: %s" % (k, v) for k, v in six.iteritems(kwargs)))) logger.info(75*"-") particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") queue.finish() tree, _ = builder(queue, particles, max_particles_in_box=max_particles_in_box, refine_weights=refine_weights, max_leaf_refine_weight=max_leaf_refine_weight, debug=True, **kwargs) tree = tree.get(queue=queue) sorted_particles = np.array(list(tree.sources)) unsorted_particles = np.array([pi.get() for pi in particles]) assert (sorted_particles == unsorted_particles[:, tree.user_source_ids]).all() if refine_weights is not None: refine_weights_reordered = refine_weights.get()[tree.user_source_ids] all_good_so_far = True if do_plot: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() from boxtree import box_flags_enum as bfe scaled_tol = tol*tree.root_extent for ibox in range(tree.nboxes): # Empty boxes exist in non-pruned trees--which themselves are undocumented. # These boxes will fail these tests. if not (tree.box_flags[ibox] & bfe.HAS_OWN_SRCNTGTS): continue extent_low, extent_high = tree.get_box_extent(ibox) assert (extent_low >= tree.bounding_box[0] - scaled_tol).all(), ( ibox, extent_low, tree.bounding_box[0]) assert (extent_high <= tree.bounding_box[1] + scaled_tol).all(), ( ibox, extent_high, tree.bounding_box[1]) start = tree.box_source_starts[ibox] box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) box_particles = sorted_particles[:, start:start+tree.box_source_counts_cumul[ibox]] good = ( (box_particles < extent_high[:, np.newaxis] + scaled_tol) & (extent_low[:, np.newaxis] - scaled_tol <= box_particles) ) all_good_here = good.all() if do_plot and not all_good_here and all_good_so_far: pt.plot( box_particles[0, np.where(~good)[1]], box_particles[1, np.where(~good)[1]], "ro") plotter.draw_box(ibox, edgecolor="red") if not all_good_here: print("BAD BOX", ibox) if not (tree.box_flags[ibox] & bfe.HAS_CHILDREN): # Check that leaf particle density is as promised. nparticles_in_box = tree.box_source_counts_cumul[ibox] if max_particles_in_box is not None: if nparticles_in_box > max_particles_in_box: print("too many particles ({0} > {1}); box {2}".format( nparticles_in_box, max_particles_in_box, ibox)) all_good_here = False else: assert refine_weights is not None box_weight = np.sum( refine_weights_reordered[start:start+nparticles_in_box]) if box_weight > max_leaf_refine_weight: print("refine weight exceeded ({0} > {1}); box {2}".format( box_weight, max_leaf_refine_weight, ibox)) all_good_here = False all_good_so_far = all_good_so_far and all_good_here if do_plot: pt.gca().set_aspect("equal", "datalim") pt.show() assert all_good_so_far def particle_tree_test_decorator(f): f = pytest.mark.opencl(f) f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f) f = pytest.mark.parametrize("dims", [2, 3])(f) return f @particle_tree_test_decorator def test_single_box_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 4, max_particles_in_box=30, do_plot=do_plot) @particle_tree_test_decorator def test_two_level_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 50, max_particles_in_box=30, do_plot=do_plot) @particle_tree_test_decorator def test_unpruned_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) # test unpruned tree build run_build_test(builder, queue, dims, dtype, 10**5, do_plot=do_plot, max_particles_in_box=30, skip_prune=True) @particle_tree_test_decorator def test_particle_tree_with_reallocations(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 10**5, max_particles_in_box=30, do_plot=do_plot, nboxes_guess=5) @particle_tree_test_decorator def test_particle_tree_with_many_empty_leaves( ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 10**5, max_particles_in_box=5, do_plot=do_plot) @particle_tree_test_decorator def test_vanilla_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 10**5, max_particles_in_box=30, do_plot=do_plot) @particle_tree_test_decorator def test_explicit_refine_weights_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) nparticles = 10**5 from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx, seed=10) refine_weights = rng.uniform(queue, nparticles, dtype=np.int32, a=1, b=10) run_build_test(builder, queue, dims, dtype, nparticles, refine_weights=refine_weights, max_leaf_refine_weight=100, do_plot=do_plot) @particle_tree_test_decorator def test_non_adaptive_particle_tree(ctx_getter, dtype, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) from boxtree import TreeBuilder builder = TreeBuilder(ctx) run_build_test(builder, queue, dims, dtype, 10**4, max_particles_in_box=30, do_plot=do_plot, kind="non-adaptive") # }}} # {{{ source/target tree @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_source_target_tree(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 2 * 10**5 ntargets = 3 * 10**5 dtype = np.float64 sources = make_normal_particle_array(queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(queue, ntargets, dims, dtype, seed=19) if do_plot: import matplotlib.pyplot as pt pt.plot(sources[0].get(), sources[1].get(), "rx") pt.plot(targets[0].get(), targets[1].get(), "g+") pt.show() from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=10, debug=True) tree = tree.get(queue=queue) sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) unsorted_sources = np.array([pi.get() for pi in sources]) unsorted_targets = np.array([pi.get() for pi in targets]) assert (sorted_sources == unsorted_sources[:, tree.user_source_ids]).all() user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) assert (sorted_targets == unsorted_targets[:, user_target_ids]).all() all_good_so_far = True if do_plot: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() tol = 1e-15 for ibox in range(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox src_start = tree.box_source_starts[ibox] tgt_start = tree.box_target_starts[ibox] box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) assert (tree.box_target_counts_nonchild[ibox] + np.sum(tree.box_target_counts_cumul[existing_children]) == tree.box_target_counts_cumul[ibox]) for what, particles in [ ("sources", sorted_sources[:, src_start:src_start+tree.box_source_counts_cumul[ibox]]), ("targets", sorted_targets[:, tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]), ]: good = ( (particles < extent_high[:, np.newaxis] + tol) & (extent_low[:, np.newaxis] - tol <= particles) ).all(axis=0) all_good_here = good.all() if do_plot and not all_good_here: pt.plot( particles[0, np.where(~good)[0]], particles[1, np.where(~good)[0]], "ro") plotter.draw_box(ibox, edgecolor="red") pt.show() if not all_good_here: print("BAD BOX %s %d" % (what, ibox)) all_good_so_far = all_good_so_far and all_good_here assert all_good_so_far if do_plot: pt.gca().set_aspect("equal", "datalim") pt.show() # }}} # {{{ test sources/targets-with-extent tree @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_extent_tree(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 100000 ntargets = 200000 dtype = np.float64 npoint_sources_per_source = 16 sources = make_normal_particle_array(queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(queue, ntargets, dims, dtype, seed=19) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(queue.context, seed=13) source_radii = 2**rng.uniform(queue, nsources, dtype=dtype, a=-10, b=0) target_radii = 2**rng.uniform(queue, ntargets, dtype=dtype, a=-10, b=0) from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() dev_tree, _ = tb(queue, sources, targets=targets, source_radii=source_radii, target_radii=target_radii, max_particles_in_box=10, debug=True) logger.info("transfer tree, check orderings") tree = dev_tree.get(queue=queue) sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) sorted_source_radii = tree.source_radii sorted_target_radii = tree.target_radii unsorted_sources = np.array([pi.get() for pi in sources]) unsorted_targets = np.array([pi.get() for pi in targets]) unsorted_source_radii = source_radii.get() unsorted_target_radii = target_radii.get() assert (sorted_sources == unsorted_sources[:, tree.user_source_ids]).all() assert (sorted_source_radii == unsorted_source_radii[tree.user_source_ids]).all() # {{{ test box structure, stick-out criterion logger.info("test box structure, stick-out criterion") user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) if ntargets: assert (sorted_targets == unsorted_targets[:, user_target_ids]).all() assert (sorted_target_radii == unsorted_target_radii[user_target_ids]).all() all_good_so_far = True # {{{ check sources, targets for ibox in range(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) box_radius = np.max(extent_high-extent_low) * 0.5 stick_out_dist = tree.stick_out_factor * box_radius assert (extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent).all(), ibox assert (extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent).all(), ibox box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) assert (tree.box_target_counts_nonchild[ibox] + np.sum(tree.box_target_counts_cumul[existing_children]) == tree.box_target_counts_cumul[ibox]) for what, starts, counts, points, radii in [ ("source", tree.box_source_starts, tree.box_source_counts_cumul, sorted_sources, sorted_source_radii), ("target", tree.box_target_starts, tree.box_target_counts_cumul, sorted_targets, sorted_target_radii), ]: bstart = starts[ibox] bslice = slice(bstart, bstart+counts[ibox]) check_particles = points[:, bslice] check_radii = radii[bslice] good = ( (check_particles + check_radii < extent_high[:, np.newaxis] + stick_out_dist) & (extent_low[:, np.newaxis] - stick_out_dist <= check_particles - check_radii) ).all(axis=0) all_good_here = good.all() if not all_good_here: print("BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox])) all_good_so_far = all_good_so_far and all_good_here assert all_good_here # }}} assert all_good_so_far # }}} # {{{ create, link point sources logger.info("creating point sources") np.random.seed(20) from pytools.obj_array import make_obj_array point_sources = make_obj_array([ cl.array.to_device(queue, unsorted_sources[i][:, np.newaxis] + unsorted_source_radii[:, np.newaxis] * np.random.uniform( -1, 1, size=(nsources, npoint_sources_per_source)) ) for i in range(dims)]) point_source_starts = cl.array.arange(queue, 0, (nsources+1)*npoint_sources_per_source, npoint_sources_per_source, dtype=tree.particle_id_dtype) from boxtree.tree import link_point_sources dev_tree = link_point_sources(queue, dev_tree, point_source_starts, point_sources, debug=True) # }}} # }}} # {{{ leaves to balls query test @pytest.mark.opencl @pytest.mark.geo_lookup @pytest.mark.parametrize("dims", [2, 3]) def test_leaves_to_balls_query(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(queue, nballs, dims, dtype) ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1) from boxtree.area_query import LeavesToBallsLookupBuilder lblb = LeavesToBallsLookupBuilder(ctx) lbl, _ = lblb(queue, tree, ball_centers, ball_radii) # get data to host for test tree = tree.get(queue=queue) lbl = lbl.get(queue=queue) ball_centers = np.array([x.get() for x in ball_centers]).T ball_radii = ball_radii.get() from boxtree import box_flags_enum for ibox in range(tree.nboxes): # We only want leaves here. if tree.box_flags[ibox] & box_flags_enum.HAS_CHILDREN: continue box_center = tree.box_centers[:, ibox] ext_l, ext_h = tree.get_box_extent(ibox) box_rad = 0.5*(ext_h-ext_l)[0] linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1) near_circles, = np.where(linf_circle_dists - ball_radii < box_rad) start, end = lbl.balls_near_box_starts[ibox:ibox+2] assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles) # }}} # {{{ area query test @pytest.mark.opencl @pytest.mark.area_query @pytest.mark.parametrize("dims", [2, 3]) def test_area_query(ctx_getter, dims, do_plot=False): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(queue, nballs, dims, dtype) ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1) from boxtree.area_query import AreaQueryBuilder aqb = AreaQueryBuilder(ctx) area_query, _ = aqb(queue, tree, ball_centers, ball_radii) # Get data to host for test. tree = tree.get(queue=queue) area_query = area_query.get(queue=queue) ball_centers = np.array([x.get() for x in ball_centers]).T ball_radii = ball_radii.get() from boxtree import box_flags_enum leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero() leaf_box_radii = np.empty(len(leaf_boxes)) leaf_box_centers = np.empty((len(leaf_boxes), dims)) for idx, leaf_box in enumerate(leaf_boxes): box_center = tree.box_centers[:, leaf_box] ext_l, ext_h = tree.get_box_extent(leaf_box) leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5 leaf_box_centers[idx] = box_center for ball_nr, (ball_center, ball_radius) \ in enumerate(zip(ball_centers, ball_radii)): linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1) near_leaves_indices, \ = np.where(linf_box_dists < ball_radius + leaf_box_radii) near_leaves = leaf_boxes[near_leaves_indices] start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2] found = area_query.leaves_near_ball_lists[start:end] actual = near_leaves assert sorted(found) == sorted(actual) @pytest.mark.opencl @pytest.mark.area_query @pytest.mark.parametrize("dims", [2, 3]) def test_area_query_elwise(ctx_getter, dims, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(queue, nparticles, dims, dtype) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(queue, nballs, dims, dtype) ball_radii = cl.array.empty(queue, nballs, dtype).fill(0.1) from boxtree.area_query import ( AreaQueryElementwiseTemplate, PeerListFinder) template = AreaQueryElementwiseTemplate( extra_args=""" coord_t *ball_radii, %for ax in AXIS_NAMES[:dimensions]: coord_t *ball_${ax}, %endfor """, ball_center_and_radius_expr=""" %for ax in AXIS_NAMES[:dimensions]: ${ball_center}.${ax} = ball_${ax}[${i}]; %endfor ${ball_radius} = ball_radii[${i}]; """, leaf_found_op="") peer_lists, evt = PeerListFinder(ctx)(queue, tree) kernel = template.generate( ctx, dims, tree.coord_dtype, tree.box_id_dtype, peer_lists.peer_list_starts.dtype, tree.nlevels) evt = kernel( *template.unwrap_args( tree, peer_lists, ball_radii, *ball_centers), queue=queue, wait_for=[evt], range=range(len(ball_radii))) cl.wait_for_events([evt]) # }}} # {{{ level restriction test @pytest.mark.opencl @pytest.mark.parametrize("lookbehind", [0, 1]) @pytest.mark.parametrize("skip_prune", [True, False]) @pytest.mark.parametrize("dims", [2, 3]) def test_level_restriction(ctx_getter, dims, skip_prune, lookbehind, do_plot=False): ctx = ctx_getter() queue = cl.CommandQueue(ctx) nparticles = 10**5 dtype = np.float64 from boxtree.tools import make_surface_particle_array particles = make_surface_particle_array(queue, nparticles, dims, dtype, seed=15) if do_plot: import matplotlib.pyplot as pt pt.plot(particles[0].get(), particles[1].get(), "x") from boxtree import TreeBuilder tb = TreeBuilder(ctx) queue.finish() tree_dev, _ = tb(queue, particles, kind="adaptive-level-restricted", max_particles_in_box=30, debug=True, skip_prune=skip_prune, lr_lookbehind=lookbehind) def find_neighbors(leaf_box_centers, leaf_box_radii): # We use an area query with a ball that is slightly larger than # the size of a leaf box to find the neighboring leaves. # # Note that since this comes from an area query, the self box will be # included in the neighbor list. from boxtree.area_query import AreaQueryBuilder aqb = AreaQueryBuilder(ctx) ball_radii = cl.array.to_device(queue, np.min(leaf_box_radii) / 2 + leaf_box_radii) leaf_box_centers = [ cl.array.to_device(queue, axis) for axis in leaf_box_centers] area_query, _ = aqb(queue, tree_dev, leaf_box_centers, ball_radii) area_query = area_query.get(queue=queue) return (area_query.leaves_near_ball_starts, area_query.leaves_near_ball_lists) # Get data to host for test. tree = tree_dev.get(queue=queue) # Find leaf boxes. from boxtree import box_flags_enum leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero() leaf_box_radii = np.empty(len(leaf_boxes)) leaf_box_centers = np.empty((dims, len(leaf_boxes))) for idx, leaf_box in enumerate(leaf_boxes): box_center = tree.box_centers[:, leaf_box] ext_l, ext_h = tree.get_box_extent(leaf_box) leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5 leaf_box_centers[:, idx] = box_center neighbor_starts, neighbor_and_self_lists = find_neighbors( leaf_box_centers, leaf_box_radii) # Check level restriction. for leaf_idx, leaf in enumerate(leaf_boxes): neighbors = neighbor_and_self_lists[ neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]] neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int) leaf_level = int(tree.box_levels[leaf]) assert (np.abs(neighbor_levels - leaf_level) <= 1).all(), \ (neighbor_levels, leaf_level) # }}} # You can test individual routines by typing # $ python test_tree.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__]) # vim: fdm=marker