from __future__ import division __copyright__ = "Copyright (C) 2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numpy.linalg as la import pyopencl as cl import pytools.test from pyopencl.tools import pytest_generate_tests_for_pyopencl \ as pytest_generate_tests from boxtree.tools import make_particle_array, particle_array_to_host # {{{ fmm interaction completeness test class ConstantOneExpansionWrangler: """This implements the 'analytical routines' for a Green's function that is constant 1 everywhere. For 'charges' of 'ones', this should get every particle a copy of the particle count. """ def __init__(self, tree): self.tree = tree def expansion_zeros(self): return np.zeros(self.tree.nboxes, dtype=np.float64) def potential_zeros(self): return np.zeros(self.tree.ntargets, dtype=np.float64) def _get_source_slice(self, ibox): pstart = self.tree.box_source_starts[ibox] return slice( pstart, pstart + self.tree.box_source_counts[ibox]) def _get_target_slice(self, ibox): pstart = self.tree.box_target_starts[ibox] return slice( pstart, pstart + self.tree.box_target_counts[ibox]) def reorder_src_weights(self, src_weights): return src_weights[self.tree.user_source_ids] def reorder_potentials(self, potentials): return potentials[self.tree.sorted_target_ids] def form_multipoles(self, leaf_boxes, src_weights): mpoles = self.expansion_zeros() for ibox in leaf_boxes: pslice = self._get_source_slice(ibox) mpoles[ibox] += np.sum(src_weights[pslice]) return mpoles def coarsen_multipoles(self, parent_boxes, start_parent_box, end_parent_box, mpoles): tree = self.tree for ibox in parent_boxes[start_parent_box:end_parent_box]: for child in tree.box_child_ids[:, ibox]: if child: mpoles[ibox] += mpoles[child] def eval_direct(self, leaf_boxes, neighbor_leaves_starts, neighbor_leaves_lists, src_weights): pot = self.potential_zeros() for itgt_leaf, itgt_box in enumerate(leaf_boxes): tgt_pslice = self._get_target_slice(itgt_box) src_sum = 0 start, end = neighbor_leaves_starts[itgt_leaf:itgt_leaf+2] for isrc_box in neighbor_leaves_lists[start:end]: src_pslice = self._get_source_slice(isrc_box) src_sum += np.sum(src_weights[src_pslice]) pot[tgt_pslice] = src_sum return pot def multipole_to_local(self, starts, lists, mpole_exps): local_exps = self.expansion_zeros() for itgt_box in xrange(self.tree.nboxes): start, end = starts[itgt_box:itgt_box+2] contrib = 0 #print itgt_box, "<-", lists[start:end] for isrc_box in lists[start:end]: contrib += mpole_exps[isrc_box] local_exps[itgt_box] += contrib return local_exps def eval_multipoles(self, leaf_boxes, sep_smaller_nonsiblings_starts, sep_smaller_nonsiblings_lists, mpole_exps): pot = self.potential_zeros() for itgt_leaf, itgt_box in enumerate(leaf_boxes): tgt_pslice = self._get_target_slice(itgt_box) contrib = 0 start, end = sep_smaller_nonsiblings_starts[itgt_leaf:itgt_leaf+2] for isrc_box in sep_smaller_nonsiblings_lists[start:end]: contrib += mpole_exps[isrc_box] pot[tgt_pslice] += contrib return pot def refine_locals(self, start_box, end_box, local_exps): for ibox in xrange(start_box, end_box): local_exps[ibox] += local_exps[self.tree.box_parent_ids[ibox]] return local_exps def eval_locals(self, leaf_boxes, local_exps): pot = self.potential_zeros() for ibox in leaf_boxes: tgt_pslice = self._get_target_slice(ibox) pot[tgt_pslice] += local_exps[ibox] return pot @pytools.test.mark_test.opencl def test_fmm_completeness(ctx_getter): """Tests whether the built FMM traversal structures and driver completely capture all interactions. """ ctx = ctx_getter() queue = cl.CommandQueue(ctx) for dims in [ 2, 3 ]: for nsources, ntargets in [ (10**6, None), (10**5, 3 * 10**5), ]: dtype = np.float64 sources = make_particle_array(queue, nsources, dims, dtype, seed=15) if ntargets is None: # This says "same as sources" to the tree builder. targets = None else: targets = make_particle_array( queue, ntargets, dims, dtype, seed=18) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) print "tree built" from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(ctx) trav = tg(queue, tree).get() print "traversal built" weights = np.random.randn(nsources) #weights = np.ones(nparticles) weights_sum = np.sum(weights) from boxtree.fmm import drive_fmm wrangler = ConstantOneExpansionWrangler(trav.tree) if ntargets is None: # This check only works for targets == sources. assert (wrangler.reorder_potentials( wrangler.reorder_src_weights(weights)) == weights).all() pot = drive_fmm(trav, wrangler, weights) # {{{ build, evaluate matrix (and identify missing interactions) if 0: mat = np.zeros((ntargets, nsources), dtype) from pytools import ProgressBar pb = ProgressBar("matrix", nsources) for i in xrange(nsources): unit_vec = np.zeros(nsources, dtype=dtype) unit_vec[i] = 1 mat[:,i] = drive_fmm(trav, wrangler, unit_vec) pb.progress() pb.finished() missing_tgts, missing_srcs = np.where(mat == 0) if len(missing_tgts): import matplotlib.pyplot as pt from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black") plotter.draw_box_numbers() plotter.set_bounding_box() for tgt, src in zip(missing_tgts, missing_srcs): pt.plot( trav.tree.particles[0][tgt], trav.tree.particles[1][tgt], "ro") pt.plot( trav.tree.particles[0][src], trav.tree.particles[1][src], "go") pt.show() #pt.spy(mat) #pt.show() # }}} assert la.norm((pot - weights_sum) / nsources) < 1e-8 # }}} # {{{ test Helmholtz fmm with pyfmmlib @pytools.test.mark_test.opencl def test_pyfmmlib_fmm(ctx_getter): from pytest import importorskip importorskip("pyfmmlib") ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 10**3 ntargets = 10**3 dims = 2 dtype = np.float64 helmholtz_k = 2 sources = make_particle_array(queue, nsources, dims, dtype, seed=15) targets = ( make_particle_array(queue, ntargets, dims, dtype, seed=18) + np.array([2, 0])) sources_host = particle_array_to_host(sources) targets_host = particle_array_to_host(targets) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) print "tree built" from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(ctx) trav = tg(queue, tree).get() print "traversal built" from pyopencl.clrandom import RanluxGenerator rng = RanluxGenerator(queue, seed=20) weights = rng.uniform(queue, nsources, dtype=np.float64).get() #weights = np.ones(nsources) from pyfmmlib import hpotgrad2dall_vec ref_pot, _, _ = hpotgrad2dall_vec(ifgrad=False, ifhess=False, sources=sources_host.T, charge=weights, targets=targets_host.T, zk=helmholtz_k) from boxtree.pyfmmlib_integration import Helmholtz2DExpansionWrangler wrangler = Helmholtz2DExpansionWrangler(trav.tree, helmholtz_k, nterms=30) from boxtree.fmm import drive_fmm pot = drive_fmm(trav, wrangler, weights) rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot) print rel_err #assert < 1e-8 #assert la.norm((pot - weights_sum) / nparticles) < 1e-8 # }}} # You can test individual routines by typing # $ python test_fmm.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__]) # vim: fdm=marker