__copyright__ = "Copyright (C) 2012 Andreas Kloeckner, Xiaoyu Wei" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import pytest import numpy as np from arraycontext import pytest_generate_tests_for_array_contexts from boxtree.array_context import ( # noqa: F401 PytestPyOpenCLArrayContextFactory, _acf) from boxtree import (make_tree_of_boxes_root, make_meshmode_mesh_from_leaves, uniformly_refine_tree_of_boxes) import logging logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # {{{ make_global_leaf_quadrature def make_global_leaf_quadrature(actx, tob, order): from meshmode.discretization.poly_element import \ GaussLegendreTensorProductGroupFactory group_factory = GaussLegendreTensorProductGroupFactory(order=order) mesh, _ = make_meshmode_mesh_from_leaves(tob) if 0: from meshmode.mesh import visualization as mvis import matplotlib.pyplot as plt mvis.draw_2d_mesh(mesh, set_bounding_box=True, draw_vertex_numbers=False, draw_element_numbers=False) plt.plot(tob.box_centers[0][tob.leaf_boxes], tob.box_centers[1][tob.leaf_boxes], "rx") plt.plot(mesh.vertices[0], mesh.vertices[1], "ro") plt.show() from meshmode.discretization import Discretization discr = Discretization(actx, mesh, group_factory) lflevels = tob.box_levels[tob.leaf_boxes] lfmeasures = (tob.root_extent / (2**lflevels))**tob.dimensions from arraycontext import flatten weights = flatten(actx.thaw(discr.quad_weights()), actx) jacobians = actx.from_numpy( np.repeat(lfmeasures/(2**tob.dimensions), discr.groups[0].nunit_dofs) ) q = weights * jacobians from pytools.obj_array import make_obj_array nodes = discr.nodes() x = make_obj_array([flatten(actx.thaw(axis), actx) for axis in nodes]) return x, q # }}} # {{{ test_uniform_tree_of_boxes @pytest.mark.parametrize("dim", [1, 2, 3]) @pytest.mark.parametrize("order", [1, 2, 3]) @pytest.mark.parametrize("nlevels", [1, 4]) def test_uniform_tree_of_boxes(actx_factory, dim, order, nlevels): actx = actx_factory() lower_bounds = np.random.rand(dim) radius = np.random.rand() + 0.1 upper_bounds = lower_bounds + radius tob = make_tree_of_boxes_root((lower_bounds, upper_bounds)) for _ in range(nlevels - 1): tob = uniformly_refine_tree_of_boxes(tob) _, q = make_global_leaf_quadrature(actx, tob, order) # integrates 1 exactly box_area = actx.np.sum(q) assert np.isclose(actx.to_numpy(box_area), radius**dim) # }}} # {{{ test_uniform_tree_of_boxes_convergence @pytest.mark.parametrize("dim", [1, 2, 3]) @pytest.mark.parametrize("order", [1, 2, 3]) def test_uniform_tree_of_boxes_convergence(actx_factory, dim, order): actx = actx_factory() radius = np.pi lower_bounds = np.zeros(dim) - radius / 2 upper_bounds = lower_bounds + radius tob = make_tree_of_boxes_root((lower_bounds, upper_bounds)) min_level = 0 max_level = 1 for _ in range(min_level): tob = uniformly_refine_tree_of_boxes(tob) # integrate cos(0.1*x + 0.2*y + 0.3*z + e) over [-pi/2, pi/2]**dim qexact_table = { 1: 20 * np.sin(np.pi/20) * np.cos(np.e), 2: 50 * (np.sqrt(5) - 1) * np.sin(np.pi/20) * np.cos(np.e), 3: 250/3 * (np.sqrt(10 - 2*np.sqrt(5)) - 2) * np.cos(np.e) } qexact = qexact_table[dim] from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for _ in range(min_level, max_level + 1): x, q = make_global_leaf_quadrature(actx, tob, order) x = np.array([actx.to_numpy(xx) for xx in x]) q = actx.to_numpy(q) inner = np.ones_like(q) * np.e for iaxis in range(dim): inner += (iaxis + 1) * 0.1 * x[iaxis] f = np.cos(inner) qh = np.sum(f * q) err = abs(qexact - qh) if err < 1e-14: break # eoc will be off after hitting machine epsilon # under uniform refinement, last box is always leaf eoc_rec.add_data_point(tob.get_box_size(-1), err) tob = uniformly_refine_tree_of_boxes(tob) if len(eoc_rec.history) > 1: # Gauss quadrature is exact up to degree 2q+1 eps = 0.05 assert eoc_rec.order_estimate() >= 2*order + 2 - eps else: print(err) assert err < 1e-14 # }}} # {{{ test_tree_plot def test_tree_plot(): radius = np.pi dim = 2 nlevels = 3 lower_bounds = np.zeros(dim) - radius / 2 upper_bounds = lower_bounds + radius tob = make_tree_of_boxes_root((lower_bounds, upper_bounds)) for _ in range(nlevels - 1): tob = uniformly_refine_tree_of_boxes(tob) # test TreePlotter compatibility from boxtree.visualization import TreePlotter tp = TreePlotter(tob) tp.draw_tree() tp.set_bounding_box() # import matplotlib.pyplot as plt # plt.show() # }}} # {{{ test_traversal_from_tob def test_traversal_from_tob(actx_factory): actx = actx_factory() radius = np.pi dim = 2 nlevels = 3 lower_bounds = np.zeros(dim) - radius/2 upper_bounds = lower_bounds + radius tob = make_tree_of_boxes_root((lower_bounds, upper_bounds)) for _ in range(nlevels): tob = uniformly_refine_tree_of_boxes(tob) from boxtree.tree_of_boxes import _sort_boxes_by_level tob = _sort_boxes_by_level(tob) def tob_from_numpy(tob): from dataclasses import replace return replace( tob, box_centers=actx.from_numpy(tob.box_centers), box_parent_ids=actx.from_numpy(tob.box_parent_ids), box_child_ids=actx.from_numpy(tob.box_child_ids), box_levels=actx.from_numpy(tob.box_levels)) blvlist = tob.box_levels.tolist() level_start_box_nrs = np.array( [blvlist.index(lv) for lv in range(tob.nlevels)]) # FIXME: fill in data tob = tob_from_numpy(tob) tob.level_start_box_nrs = level_start_box_nrs tob.level_start_box_nrs_dev = actx.from_numpy(level_start_box_nrs) tob._is_pruned = True tob.sources_have_extent = False tob.particle_id_dtype = np.dtype(np.int32) tob.box_id_dtype = np.dtype(np.int32) tob.box_level_dtype = np.dtype(np.int32) tob.coord_dtype = np.dtype(np.float64) tob.sources_are_targets = True tob.targets_have_extent = False tob.extent_norm = "linf" tob.aligned_nboxes = tob.nboxes # particle sizes # FIXME tob.stick_out_factor = 1e-12 tob.box_target_bounding_box_min = None tob.box_source_bounding_box_min = None from boxtree.traversal import FMMTraversalBuilder from boxtree.tree import box_flags_enum tob.box_flags = actx.empty(tob.nboxes, box_flags_enum.dtype) tg = FMMTraversalBuilder(actx.context) trav, _ = tg(actx.queue, tob) # }}} # You can test individual routines by typing # $ python test_tree.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker