__copyright__ = "Copyright (C) 2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest import numpy as np import numpy.linalg as la from arraycontext import pytest_generate_tests_for_array_contexts from boxtree.array_context import ( # noqa: F401 PytestPyOpenCLArrayContextFactory, _acf) from boxtree.tools import make_normal_particle_array import logging logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # {{{ connectivity test @pytest.mark.opencl @pytest.mark.parametrize(("dims", "sources_are_targets"), [ (2, True), (2, False), (3, True), (3, False), ]) def test_tree_connectivity(actx_factory, dims, sources_are_targets): actx = actx_factory() dtype = np.float64 sources = make_normal_particle_array(actx.queue, 1 * 10**5, dims, dtype) if sources_are_targets: targets = None else: targets = make_normal_particle_array(actx.queue, 2 * 10**5, dims, dtype) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb(actx.queue, sources, max_particles_in_box=30, targets=targets, debug=True) from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(actx.context) trav, _ = tg(actx.queue, tree, debug=True) tree = tree.get(queue=actx.queue) trav = trav.get(queue=actx.queue) levels = tree.box_levels parents = tree.box_parent_ids.T children = tree.box_child_ids.T centers = tree.box_centers.T # {{{ parent and child relations, levels match up for ibox in range(1, tree.nboxes): # /!\ Not testing box 0, has no parents parent = parents[ibox] assert levels[parent] + 1 == levels[ibox] assert ibox in children[parent], ibox # }}} if 0: import matplotlib.pyplot as pt from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black") plotter.draw_box_numbers() plotter.set_bounding_box() pt.show() # {{{ neighbor_source_boxes (list 1) consists of source boxes for itgt_box, ibox in enumerate(trav.target_boxes): start, end = trav.neighbor_source_boxes_starts[itgt_box:itgt_box+2] nbl = trav.neighbor_source_boxes_lists[start:end] if sources_are_targets: assert ibox in nbl for jbox in nbl: assert np.all(0 == children[jbox]), (ibox, jbox, children[jbox]) logger.info("list 1 consists of source boxes") # }}} # {{{ separated siblings (list 2) are actually separated for itgt_box, tgt_ibox in enumerate(trav.target_or_target_parent_boxes): start, end = trav.from_sep_siblings_starts[itgt_box:itgt_box+2] seps = trav.from_sep_siblings_lists[start:end] assert np.all(levels[seps] == levels[tgt_ibox]) # three-ish box radii (half of size) mindist = 2.5 * 0.5 * 2**-int(levels[tgt_ibox]) * tree.root_extent icenter = centers[tgt_ibox] for jbox in seps: dist = la.norm(centers[jbox]-icenter) assert dist > mindist, (dist, mindist) logger.info("separated siblings (list 2) are actually separated") # }}} if sources_are_targets: # {{{ from_sep_{smaller,bigger} are duals of each other assert np.all(trav.target_or_target_parent_boxes == np.arange(tree.nboxes)) # {{{ list 4 <= list 3 for level, ssn in enumerate(trav.from_sep_smaller_by_level): for itarget_box, ibox in \ enumerate(trav.target_boxes_sep_smaller_by_source_level[level]): start, end = ssn.starts[itarget_box:itarget_box+2] for jbox in ssn.lists[start:end]: rstart, rend = trav.from_sep_bigger_starts[jbox:jbox+2] assert ibox in trav.from_sep_bigger_lists[rstart:rend], \ (ibox, jbox) # }}} # {{{ list 4 <= list 3 box_to_target_boxes_sep_smaller_by_source_level = [] for level in range(trav.tree.nlevels): box_to_target_boxes_sep_smaller = np.empty( tree.nboxes, tree.box_id_dtype) box_to_target_boxes_sep_smaller.fill(-1) box_to_target_boxes_sep_smaller[ trav.target_boxes_sep_smaller_by_source_level[level] ] = np.arange( len(trav.target_boxes_sep_smaller_by_source_level[level]), dtype=tree.box_id_dtype ) box_to_target_boxes_sep_smaller_by_source_level.append( box_to_target_boxes_sep_smaller) assert np.all(trav.source_boxes == trav.target_boxes) assert np.all(trav.target_or_target_parent_boxes == np.arange( tree.nboxes, dtype=tree.box_id_dtype)) for ibox in range(tree.nboxes): start, end = trav.from_sep_bigger_starts[ibox:ibox+2] for jbox in trav.from_sep_bigger_lists[start:end]: # In principle, entries of from_sep_bigger_lists are # source boxes. In this special case, source and target boxes # are the same thing (i.e. leaves--see assertion above), so we # may treat them as targets anyhow. good = False for level, ssn in enumerate(trav.from_sep_smaller_by_level): jtgt_box = \ box_to_target_boxes_sep_smaller_by_source_level[level][jbox] if jtgt_box == -1: continue rstart, rend = ssn.starts[jtgt_box:jtgt_box + 2] good = good or ibox in ssn.lists[rstart:rend] if not good: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() plotter.draw_box(ibox, facecolor="green", alpha=0.5) plotter.draw_box(jbox, facecolor="red", alpha=0.5) import matplotlib.pyplot as pt pt.gca().set_aspect("equal") pt.show() # This assertion failing means that ibox's list 4 contains a box # 'jbox' whose list 3 does not contain ibox. assert good, (ibox, jbox) # }}} logger.info("list 3, 4 are duals") # }}} # {{{ from_sep_smaller satisfies relative level assumption # for itarget_box, ibox in enumerate(trav.target_boxes): # for ssn in trav.from_sep_smaller_by_level: for level, ssn in enumerate(trav.from_sep_smaller_by_level): for itarget_box, ibox in enumerate( trav.target_boxes_sep_smaller_by_source_level[level]): start, end = ssn.starts[itarget_box:itarget_box+2] for jbox in ssn.lists[start:end]: assert levels[ibox] < levels[jbox] logger.info("list 3 satisfies relative level assumption") # }}} # {{{ from_sep_bigger satisfies relative level assumption for itgt_box, tgt_ibox in enumerate(trav.target_or_target_parent_boxes): start, end = trav.from_sep_bigger_starts[itgt_box:itgt_box+2] for jbox in trav.from_sep_bigger_lists[start:end]: assert levels[tgt_ibox] > levels[jbox] logger.info("list 4 satisfies relative level assumption") # }}} # {{{ level_start_*_box_nrs lists make sense for name, ref_array in [ ("level_start_source_box_nrs", trav.source_boxes), ("level_start_source_parent_box_nrs", trav.source_parent_boxes), ("level_start_target_box_nrs", trav.target_boxes), ("level_start_target_or_target_parent_box_nrs", trav.target_or_target_parent_boxes) ]: level_starts = getattr(trav, name) for lev in range(tree.nlevels): start, stop = level_starts[lev:lev+2] box_nrs = ref_array[start:stop] assert np.all(tree.box_levels[box_nrs] == lev), name # }}} # }}} # {{{ visualization helper # Set 'visualize' kwarg to True to actually plot. Otherwise, this # test simply ensures that interaction list plotting is still # working. def test_plot_traversal(actx_factory, well_sep_is_n_away=1, visualize=False): pytest.importorskip("matplotlib") actx = actx_factory() for dims in [2]: nparticles = 10**4 dtype = np.float64 from pytools.obj_array import make_obj_array rng = np.random.default_rng(15) particles = make_obj_array([ actx.from_numpy(rng.normal(0.0, 1.0, (nparticles,)).astype(dtype)) for i in range(dims)]) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=well_sep_is_n_away) trav, _ = tg(actx.queue, tree) tree = tree.get(queue=actx.queue) trav = trav.get(queue=actx.queue) from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black") #plotter.draw_box_numbers() plotter.set_bounding_box() from boxtree.visualization import draw_box_lists if well_sep_is_n_away == 1: draw_box_lists(plotter, trav, 380) elif well_sep_is_n_away == 2: draw_box_lists(plotter, trav, 320) if visualize: import matplotlib.pyplot as pt pt.gca().set_xticks([]) pt.gca().set_yticks([]) pt.show() # }}} # {{{ test_from_sep_siblings_translation_and_rotation_classes @pytest.mark.parametrize("well_sep_is_n_away", (1, 2)) def test_from_sep_siblings_translation_and_rotation_classes( actx_factory, well_sep_is_n_away): actx = actx_factory() dims = 3 nparticles = 10**4 dtype = np.float64 # {{{ build tree from pytools.obj_array import make_obj_array rng = np.random.default_rng(15) particles = make_obj_array([ actx.from_numpy(rng.normal(0.0, 1.0, (nparticles,)).astype(dtype)) for i in range(dims)]) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) # }}} # {{{ build traversal from boxtree.traversal import FMMTraversalBuilder from boxtree.rotation_classes import RotationClassesBuilder from boxtree.translation_classes import TranslationClassesBuilder tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=well_sep_is_n_away) trav, _ = tg(actx.queue, tree) rb = RotationClassesBuilder(actx.context) result, _ = rb(actx.queue, trav, tree) tb = TranslationClassesBuilder(actx.context) result_tb, _ = tb(actx.queue, trav, tree) rot_classes = actx.to_numpy( result.from_sep_siblings_rotation_classes) rot_angles = actx.to_numpy( result.from_sep_siblings_rotation_class_to_angle) translation_classes = actx.to_numpy( result_tb.from_sep_siblings_translation_classes) distance_vectors = actx.to_numpy( result_tb.from_sep_siblings_translation_class_to_distance_vector) tree = tree.get(queue=actx.queue) trav = trav.get(queue=actx.queue) centers = tree.box_centers.T # }}} # For each entry of from_sep_siblings, compute the source-target translation # direction as a vector, and check that the from_sep_siblings rotation class # in the traversal corresponds to the angle with the z-axis of the # translation direction. for itgt_box, tgt_ibox in enumerate(trav.target_or_target_parent_boxes): start, end = trav.from_sep_siblings_starts[itgt_box:itgt_box+2] seps = trav.from_sep_siblings_lists[start:end] level_rot_classes = rot_classes[start:end] level_translation_classes = translation_classes[start:end] actual_translation_vecs = distance_vectors[:, level_translation_classes].T expected_translation_vecs = centers[tgt_ibox] - centers[seps] if len(expected_translation_vecs) > 0: assert np.allclose(actual_translation_vecs, expected_translation_vecs, atol=1e-13, rtol=1e-13) theta = np.arctan2( la.norm(expected_translation_vecs[:, :dims - 1], axis=1), expected_translation_vecs[:, dims - 1]) level_rot_angles = rot_angles[level_rot_classes] assert np.allclose(theta, level_rot_angles, atol=1e-13, rtol=1e-13) # }}} # You can test individual routines by typing # $ python test_traversal.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker