__copyright__ = "Copyright (C) 2021 Hao Gao" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys import pytest from arraycontext import pytest_generate_tests_for_array_contexts from boxtree.array_context import ( # noqa: F401 PytestPyOpenCLArrayContextFactory, _acf) import numpy as np import numpy.linalg as la from boxtree.pyfmmlib_integration import ( Kernel, FMMLibTreeIndependentDataForWrangler, FMMLibExpansionWrangler) from boxtree.constant_one import ( ConstantOneExpansionWrangler as ConstantOneExpansionWranglerBase, ConstantOneTreeIndependentDataForWrangler) import logging logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # NOTE: Do not import mpi4py.MPI object at the module level, because OpenMPI # does not support recursive invocations. def _cachedir(): import tempfile return tempfile.mkdtemp(prefix="boxtree-pytest-") # {{{ test_against_shared def _test_against_shared( tmp_cache_basedir, dims, nsources, ntargets, dtype, communicate_mpoles_via_allreduce=False): from mpi4py import MPI # Get the current rank comm = MPI.COMM_WORLD rank = comm.Get_rank() rank_cache_dir = os.path.join(tmp_cache_basedir, f"rank_{rank:03d}") # Initialize arguments for worker processes global_tree_host = None sources_weights = np.empty(0, dtype=dtype) helmholtz_k = 0 def fmm_level_to_order(tree, level): return max(level, 3) from unittest.mock import patch with patch.dict(os.environ, {"XDG_CACHE_HOME": rank_cache_dir}): actx = _acf() from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=2) tree_indep = FMMLibTreeIndependentDataForWrangler( dims, Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE) # Generate particles and run shared-memory parallelism on rank 0 if rank == 0: # Generate random particles and source weights from boxtree.tools import make_normal_particle_array as p_normal sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = p_normal(actx.queue, ntargets, dims, dtype, seed=18) rng = np.random.default_rng(20) sources_weights = rng.uniform(0.0, 1.0, (nsources,)) target_radii = rng.uniform(0.0, 0.05, (ntargets,)) # Build the tree and interaction lists from boxtree import TreeBuilder tb = TreeBuilder(actx.context) global_tree_dev, _ = tb( actx.queue, sources, targets=targets, target_radii=target_radii, stick_out_factor=0.25, max_particles_in_box=30, debug=True) d_trav, _ = tg(actx.queue, global_tree_dev, debug=True) global_traversal_host = d_trav.get(queue=actx.queue) global_tree_host = global_traversal_host.tree # Get pyfmmlib expansion wrangler wrangler = FMMLibExpansionWrangler( tree_indep, global_traversal_host, fmm_level_to_order=fmm_level_to_order) # Compute FMM with one MPI rank from boxtree.fmm import drive_fmm pot_fmm = drive_fmm(wrangler, [sources_weights]) * 2 * np.pi # Compute FMM using the distributed implementation def wrangler_factory(local_traversal, global_traversal): from boxtree.distributed.calculation import \ DistributedFMMLibExpansionWrangler return DistributedFMMLibExpansionWrangler( actx.context, comm, tree_indep, local_traversal, global_traversal, fmm_level_to_order=fmm_level_to_order, communicate_mpoles_via_allreduce=communicate_mpoles_via_allreduce) from boxtree.distributed import DistributedFMMRunner distribued_fmm_info = DistributedFMMRunner( actx.queue, global_tree_host, tg, wrangler_factory, comm=comm) timing_data = {} pot_dfmm = distribued_fmm_info.drive_dfmm( [sources_weights], timing_data=timing_data) assert timing_data # Uncomment the following section to print the time taken of each stage """ if rank == 1: from pytools import Table table = Table() table.add_row(["stage", "time (s)"]) for stage in timing_data: table.add_row([stage, "%.2f" % timing_data[stage]["wall_elapsed"]]) print(table) """ if rank == 0: error = (la.norm(pot_fmm - pot_dfmm * 2 * np.pi, ord=np.inf) / la.norm(pot_fmm, ord=np.inf)) print(error) assert error < 1e-14 @pytest.mark.mpi @pytest.mark.parametrize( "num_processes, dims, nsources, ntargets, communicate_mpoles_via_allreduce", [ (4, 3, 10000, 10000, True), (4, 3, 10000, 10000, False) ] ) def test_against_shared( tmp_path, num_processes, dims, nsources, ntargets, communicate_mpoles_via_allreduce): pytest.importorskip("mpi4py") from boxtree.tools import run_mpi run_mpi(__file__, num_processes, { "PYTEST": "shared", "dims": dims, "nsources": nsources, "ntargets": ntargets, "OMP_NUM_THREADS": 1, "tmp_cache_basedir": tmp_path / "boxtree_distributed_test", "communicate_mpoles_via_allreduce": communicate_mpoles_via_allreduce }) # }}} # {{{ test_constantone def _test_constantone(tmp_cache_basedir, dims, nsources, ntargets, dtype): from boxtree.distributed.calculation import DistributedExpansionWrangler class ConstantOneExpansionWrangler( ConstantOneExpansionWranglerBase, DistributedExpansionWrangler): def __init__( self, queue, comm, tree_indep, local_traversal, global_traversal): DistributedExpansionWrangler.__init__( self, queue, comm, global_traversal, False, communicate_mpoles_via_allreduce=True) ConstantOneExpansionWranglerBase.__init__( self, tree_indep, local_traversal) self.level_orders = np.ones(local_traversal.tree.nlevels, dtype=np.int32) def reorder_sources(self, source_array): if self.comm.Get_rank() == 0: return source_array[self.global_traversal.tree.user_source_ids] else: return None def reorder_potentials(self, potentials): if self.comm.Get_rank() == 0: return potentials[self.global_traversal.tree.sorted_target_ids] else: return None from mpi4py import MPI # Get the current rank comm = MPI.COMM_WORLD rank = comm.Get_rank() rank_cache_dir = os.path.join(tmp_cache_basedir, f"rank_{rank:03d}") # Initialization tree = None sources_weights = np.empty(0, dtype=dtype) from unittest.mock import patch with patch.dict(os.environ, {"XDG_CACHE_HOME": rank_cache_dir}): actx = _acf() from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(actx.context) if rank == 0: # Generate random particles from boxtree.tools import make_normal_particle_array as p_normal sources = p_normal(actx.queue, nsources, dims, dtype, seed=15) targets = (p_normal(actx.queue, ntargets, dims, dtype, seed=18) + np.array([2, 0, 0])[:dims]) # Constant one source weights sources_weights = np.ones((nsources,), dtype=dtype) # Build the global tree from boxtree import TreeBuilder tb = TreeBuilder(actx.context) tree, _ = tb( actx.queue, sources, targets=targets, max_particles_in_box=30, debug=True) tree = tree.get(actx.queue) tree_indep = ConstantOneTreeIndependentDataForWrangler() def wrangler_factory(local_traversal, global_traversal): return ConstantOneExpansionWrangler( actx.queue, comm, tree_indep, local_traversal, global_traversal) from boxtree.distributed import DistributedFMMRunner distributed_fmm_info = DistributedFMMRunner( actx.queue, tree, tg, wrangler_factory, comm=MPI.COMM_WORLD) pot_dfmm = distributed_fmm_info.drive_dfmm([sources_weights]) if rank == 0: assert (np.all(pot_dfmm == nsources)) @pytest.mark.mpi @pytest.mark.parametrize("num_processes, dims, nsources, ntargets", [ (4, 3, 10000, 10000) ]) def test_constantone(tmp_path, num_processes, dims, nsources, ntargets): pytest.importorskip("mpi4py") from boxtree.tools import run_mpi run_mpi(__file__, num_processes, { "PYTEST": "constantone", "dims": dims, "nsources": nsources, "ntargets": ntargets, "OMP_NUM_THREADS": 1, "tmp_cache_basedir": tmp_path / "boxtree_distributed_test", "communicate_mpoles_via_allreduce": False }) # }}} if __name__ == "__main__": dtype = np.float64 tmp_cache_basedir = os.environ.get("tmp_cache_basedir", _cachedir()) if "PYTEST" in os.environ: dims = int(os.environ["dims"]) nsources = int(os.environ["nsources"]) ntargets = int(os.environ["ntargets"]) communicate_mpoles_via_allreduce = ( True if os.environ["communicate_mpoles_via_allreduce"] == "True" else False) if os.environ["PYTEST"] == "shared": _test_against_shared( tmp_cache_basedir, dims, nsources, ntargets, dtype, communicate_mpoles_via_allreduce=communicate_mpoles_via_allreduce) elif os.environ["PYTEST"] == "constantone": _test_constantone(tmp_cache_basedir, dims, nsources, ntargets, dtype) else: if len(sys.argv) > 1: # You can test individual routines by typing # $ python test_distributed.py 'test_constantone( # tmp_cache_basedir, 4, 3, 10000, 10000)' exec(sys.argv[1]) elif len(sys.argv) == 1: # Run against_shared test case with default parameter dims = 3 nsources = 10000 ntargets = 10000 _test_against_shared(tmp_cache_basedir, dims, nsources, ntargets, dtype)