import numpy as np import pyopencl as cl import time import pytest from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from pymbolic import evaluate import logging import os logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING")) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) @pytest.mark.opencl @pytest.mark.parametrize( ("nsources", "ntargets", "dims", "dtype"), [ (5000, 5000, 3, np.float64) ] ) def test_cost_counter(ctx_factory, nsources, ntargets, dims, dtype): ctx = ctx_factory() queue = cl.CommandQueue(ctx) # {{{ Generate sources, targets and target_radii from boxtree.tools import make_normal_particle_array as p_normal sources = p_normal(queue, nsources, dims, dtype, seed=15) targets = p_normal(queue, ntargets, dims, dtype, seed=18) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(queue.context, seed=22) target_radii = rng.uniform( queue, ntargets, a=0, b=0.05, dtype=dtype ).get() # }}} # {{{ Generate tree and traversal from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb( queue, sources, targets=targets, target_radii=target_radii, stick_out_factor=0.15, max_particles_in_box=30, debug=True ) from boxtree.traversal import FMMTraversalBuilder tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2) trav_dev, _ = tg(queue, tree, debug=True) trav = trav_dev.get(queue=queue) # }}} # {{{ Construct cost models from boxtree.cost import CLCostModel, PythonCostModel cl_cost_model = CLCostModel(queue, None) python_cost_model = PythonCostModel(None) constant_one_params = dict( c_l2l=1, c_l2p=1, c_m2l=1, c_m2m=1, c_m2p=1, c_p2l=1, c_p2m=1, c_p2p=1 ) from boxtree.cost import pde_aware_translation_cost_model xlat_cost = pde_aware_translation_cost_model(dims, trav.tree.nlevels) # }}} # {{{ Test process_direct queue.finish() start_time = time.time() cl_direct = cl_cost_model.process_direct(trav_dev, 5.0) queue.finish() logger.info("OpenCL time for collect_direct_interaction_data: {0}".format( str(time.time() - start_time) )) start_time = time.time() python_direct = python_cost_model.process_direct(trav, 5.0) logger.info("Python time for collect_direct_interaction_data: {0}".format( str(time.time() - start_time) )) assert np.equal(cl_direct.get(), python_direct).all() # }}} # {{{ Test process_direct_aggregate start_time = time.time() cl_direct_aggregate = cl_cost_model.process_direct_aggregate(trav_dev, xlat_cost) queue.finish() logger.info("OpenCL time for count_direct: {0}".format( str(time.time() - start_time) )) cl_direct_aggregate_num = evaluate( cl_direct_aggregate, context=constant_one_params ) start_time = time.time() python_direct_aggregate = python_cost_model.process_direct_aggregate( trav, xlat_cost ) logger.info("Python time for count_direct: {0}".format( str(time.time() - start_time) )) python_direct_aggregate_num = evaluate( python_direct_aggregate, context=constant_one_params ) assert cl_direct_aggregate_num == python_direct_aggregate_num # }}} def main(): nsouces = 100000 ntargets = 100000 ndims = 3 dtype = np.float64 ctx_factory = cl.create_some_context test_cost_counter(ctx_factory, nsouces, ntargets, ndims, dtype) if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: main()